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We investigate Nuclear Lattice Effective Field Theory for the two-body system for several lattice spacings 
at lowest order in the pionless as well as in the pionful theory. We discuss issues of regularizations 
and predictions for the effective range expansion. In the pionless case, a simple Gaussian smearing 
allows to demonstrate lattice spacing independence over a wide range of lattice spacings. We show that 
regularization methods known from the continuum formulation are necessary as well as feasible for the 
pionful approach.
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1. Introduction

The Nuclear Lattice Effective Field Theory (EFT) method [1] has 
led to impressive progress in the last decade and it has been ap-
plied to few- and many-body-systems successfully, for reviews see 
e.g. Refs. [2,3]. The lattice spacing serves as a natural UV regulator 
for the theory, as for a given value of a the maximal momentum is 
pmax = π/a. Although these calculations give a quite good descrip-
tion for the phase shifts, energy levels, etc., almost all calculations 
have been done for a fixed lattice spacing a � 2 fm, correspond-
ing to a soft momentum cut-off of about 300 MeV. This allows 
one to treat all corrections beyond leading order (LO) in pertur-
bation theory. However, the cut-off dependence or lattice spacing 
dependence has not been analyzed systematically and there are 
still some problems in the two-nucleon system like the relatively 
poor description of the 3S1–3D1 mixing angle [4]. Further, such 
soft potentials seem to lead to some overbinding in medium-mass 
nuclei, as discussed in Ref. [5]. Also, it has been shown that the 
leading order four-nucleon contact interactions need to be smeared 
to avoid a cluster instability when four nucleons reside on one lat-
tice site [6]. One might argue that the extension of such smearing 
methods also to the pion exchange contributions leads to a natural 
regularization of the lattice EFT, allowing to vary the lattice spacing 
freely but using an explicit momentum cut-off in the spirit of the 
work of Ref. [7]. More precisely, this inherent physical cut-off was 
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implemented by formulating the lattice action in terms of blocked 
fields.

In this paper, we will focus on the neutron–proton two-body 
system at lowest order and discuss the lattice spacing dependence 
systematically. In addition, we discuss the necessity of regularizing 
the one-pion-exchange potential and provide a method that goes 
beyond smearing and is borrowed from continuum calculations, 
which leads to the lattice spacing independence of observables for 
a broad range in a, see Ref. [8].

While most of the calculations solve the transfer matrix using 
Monte Carlo methods or the Lanczos method for small eigenvalues 
of large sparse matrices, we use here the Hamiltonian formalism 
and solve it with the Lanczos method. Using this approach we can 
eliminate the discretization in the time direction and we have to 
consider only the variation in the position space discretization. In 
the following, all expressions are given in lattice units and one has 
to multiply the lattice results by the appropriate power of the lat-
tice spacing a to get the physical values. Note also that we show 
simulations for various large enough volumes so that Lüscher’s 
finite volume formulas are sufficient for the infinite volume ex-
traction and we can entirely focus on the remaining dependence 
on the lattice spacing.

In what follows, we will first display the necessary formalism 
to calculate the neutron–proton system to lowest order on the lat-
tice. It is important to already improve the free Hamiltonian so 
as to be as close as possible to the free non-relativistic disper-
sion relation. At very low energies, one can consider the theory 
with contact interactions only, the so-called pionless theory. As we 
will show, the smearing of the contact interactions can be used 
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Table 1
Coefficients for the lattice discretization of the Laplacian, the dispersion relation and 
momentum components depending on the stretching factor N .

O(a4) O(a2)

ω0 N · 1
9 + 49

36 o0 0

ω1 N · 1
6 + 3

2 o1
4
3

ω2 N · 1
15 + 3

20 o2
1
6

ω3 N · 1
90 + 1

90 o3 0

as a regulator, leading to regulator-independent results for a broad 
range of values of the lattice spacing a. Matters are different in the 
pionful theory, which to LO consists of two four-nucleon contact 
interaction and the long-ranged static one-pion-exchange potential 
(OPEP). As will be shown, combining the smearing of the contact 
interactions with a position-space regularization of the OPEP will 
again lead to results largely independent of a for the physically 
sensible range of lattice spacing. Hence, one could use this modi-
fied leading-order approach to improve the current auxiliary field 
Monte Carlo simulations in Nuclear Lattice EFT. In principle, now it 
is possible to consider the continuum limit a → 0, however, we re-
frain from doing that here, as it is sufficient to demonstrate lattice 
spacing independence for a physically relevant range of a.

2. The lattice Hamiltonian

To set the stage and to introduce our notations, we first discuss 
the free Hamiltonian. Its discretized form reads

Hfree = 1

2mN

∑
n,i, j

∑
l̂

{
2ω0a†

i, j (n)ai, j (n) +
3∑

k=1

(−1)k

× ωk

[
a†

i, j (n)ai, j

(
n + kl̂

)
+ a†

i, j (n)ai, j

(
n − kl̂

)]}
. (1)

Here, ai, j , a
†
i, j are the fermionic annihilation and creation operators 

with spin and isospin indices i, j, respectively, mN = (mp + mn)/2

denotes the nucleon mass and l̂ is a unit vector in spatial direc-
tion. The summation is over all lattice points n on the L3 lattice. 
We use a stretched O(am)-improved action and its coefficients 
ωk are summarized in Table 1, see e.g. Refs. [9,10]. m indicates 
the number of hopping points beyond next-neighbor interaction 
used in the Laplacian discretization in each spatial direction and 
we use m = 4 throughout this paper. The stretching factor N is 
introduced to minimize the errors arising from the discretized dis-
persion relations on the lattice especially for large momenta where 
the discretization does not approximate the continuum relation 
E = p2/(2mN ) anymore. While there is some arbitrariness on the 
exact choice of N depending on the values of the respective mo-
mentum, N = 3.5 is a sensible choice.

The interaction potential consists of two/three terms in the 
pionless/pionful theory at lowest order. The contact interaction 
consists of two terms which can be chosen as

Hcont = 1

2

∑
n

[
Cρa†,a (n)ρa†,a (n)

+ C I

∑
I

ρa†,a
I (n)ρa†,a

I (n)

]
, (2)

where the terms are summed over all lattice sites n and the 
isospin index I = 1, 2, 3. These terms appear in both versions of 

the EFT considered here. In the pionful theory, one has in addition 
the one-pion-exchange potential

HOPE = − g2
A

8F 2
π

∑
S1,S2,I

∑
n1,n2

G S1 S2 (n1 − n2)

× ρa†,a
S1,I (n1)ρ

a†,a
S2,I (n2) , (3)

with g A the axial-vector coupling constant and Fπ the pion decay 
constant. S1, S2 are the respective spin indices which run from 1 
to 3. The corresponding lattice density operators read

ρa†,a (n) = a†
i, j (n)ai, j (n) , (4)

ρa†,a
I (n) = a†

i, j (n) τI, j j′ai, j (n) , (5)

ρa†,a
S,I (n) = a†

i, j (n)σS,ii′τI, j j′ai, j (n) , (6)

and G S1 S2 (n) represents the pion propagator times the pion–
nucleon vertex and is defined as

G S1 S2 (n) = 1

L3

∑
p

exp (−i p · n) ν
(

pS1

)
ν

(
pS2

)
1 + 2

qπ

3∑
k=1

∑
l

(−1)k cos (kpl)

(7)

with qπ = M2
π + 6ω0. ν(pS1 ), ν(pS2 ) are the discretized momen-

tum components of the first and second pion field which yields 
ν(pl) = o1 sin(pl) − o2 sin(2pl) = pl(1 + O(p4

l )) with the coeffi-
cients summarized in Table 1. We only use an O(a2) discretiza-
tion, because we do not want to expand the respective interac-
tion too much. A further improved momentum approximation is 
linked to a further expanded derivative in position space includ-
ing more interactions at distinct lattice points and the locality of 
the pion–nucleon interaction is lost. These momenta arise from 
the pion field derivative in the pion nucleon Lagrangian Lπ N =
−g A/(2Fπ )N†τ · (σ · ∇)π N . To arrive at Eq. (7), we note that the 
pion propagator is derived from the discrete action for instanta-
neous pions which takes the form [6]

Sππ (πI ) =
(

m2
π

2
+ 3ω0

)∑
n

πI (n)πI (n)

+
∑
n,l̂,k

(−1)k ωkπI (n)πI

(
n + kl̂

)
. (8)

This is reparametrized by π ′
I (n) = √

qππI (n). Finally, the new pion 
action reads

Sππ

(
π ′

I

) = 1

2

∑
n

π ′
I (n)π ′

I (n)

+ 1

qπ

∑
n,l̂,k

(−1)k ωkπ
′ (n)π ′

I

(
n + kl̂

)
(9)

and the respective pion propagator reads

Dπ (p) =
[

1 + 2

qπ

3∑
k=1

∑
l

(−1)k cos (kpl)

]−1

. (10)

Furthermore, we introduce a Gaussian smearing

f (p) = 1

f0
exp

[
−b

ν̃ (p)

2

]
(11)
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