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We explore the performance of various correlation measures for open Dirac system with Hawking effect 
in Schwarzschild space–time. Our results indicate that the impact of Hawking effect on physical accessible 
entanglement is weaker than that of decoherence. For generalized amplitude damping (GAD) channel, 
the entanglement sudden death (ESD) is analyzed in detail, and the inequivalence of quantization for 
Dirac particles in the black hole and Kruskal space–time is verified via quantum discord measure. 
In addition, as an example for interpreting Bell non-locality, we study the GAD channel with Hawking 
effect. It can be noticed that there is a boundary line of Bell violation for physically accessible states. 
That is, quantum non-locality would disappear when Hawking temperature exceeds a certain value. This 
critical temperature increases as a decoherence parameter decreases. In the case of phase damping (PD) 
channel, the interaction between the particle and noise environment does not produce bipartite system–
environment entanglement. Then we discuss entanglement distributions, and find that the reduced 
physically accessible entanglement can be redistributed to physical inaccessible region. At last, we extend 
our investigation to an N-qubit system, and obtain a universal expression of the physical accessible 
entanglement.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Recently, researches about combination of quantum information 
science and relativity theory have drawn a lot of attention [1–6], 
since it not only promises a deeper comprehension about quan-
tum mechanics [7] but also offers a new method of understanding 
the information paradox existing in black hole [8–10]. For instance, 
in the background of a black hole, Pan et al. [1] discussed the 
quantum entanglement for scalar field, and Deng et al. [4] studied 
how the Hawking effect and prepared states could affect entan-
glement distillability of Dirac fields. More recently, Xu et al. [6]
expanded the investigation of the effect of Hawking radiation on 
multipartite entanglement in Schwarzschild space–time. However, 
the above investigations are confined to an isolated system for 
the studies of quantum information. As the real quantum system
inevitably suffers from quantum decoherence, this reciprocal in-
teraction between the system and its external noise environment 
would lead to the degradation of quantum coherence and, in cer-
tain cases, produce entanglement sudden death (ESD). It therefore 
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raises the question of how to understand the behaviors of quan-
tum information for open system in Schwarzschild space–time.

To solve the problem, we probe the effect of Hawking radia-
tion [11] on various quantum correlation measures for Dirac parti-
cles involved in dissipative environment in Schwarzschild space–
time. Our aim is to unveil some interesting phenomena about 
the characteristic of correlation measurements with Hawking ef-
fect and decoherence channel, which may lead to a much better 
understanding of the Hawking–Unruh effects in quantum informa-
tion processing. To illustrate this problem properly, we propose the 
scheme in a situation where two observers, Alice and Bob, share 
a generically entangled state at the same initial point in the flat 
Minkowski space–time. During the same time interval, Alice re-
mains at the asymptotically flat region undergoing a decoherence 
channel, while Bob freely falls in toward a Schwarzschild black 
hole and eventually locates near the event horizon. Our work here 
is to provide a better insight into entanglement redistribution and 
information paradox of the black holes from the perspective of 
quantum mechanics.

This paper is organized as follows. In Section 2, a brief review 
of the vacuum structure and Hawking radiation for Dirac fields 
in Schwarzschild space–time is given. In Section 3, we explore 
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the properties of various correlation measures under two different 
decoherence environments with Hawking effect in the background 
of a Schwarzschild black hole. Finally, Section 4 summarizes our 
conclusions.

2. Vacuum structure of Dirac particles in the background
of a Schwarzschild black hole

We first introduce a concise review of vacuum structure for 
Dirac particles in Schwarzschild space–time. The Dirac equa-
tion [12] in a curve space–time can be read as

[
γ aeu

a (∂u + Γu)
]
ψ = 0 (1)

while the metric for the Schwarzschild space–time is given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+ r2(dθ2 + sin2 θdϕ2). (2)

Combining Eq. (1) with Eq. (2) then leads to the Dirac equation in 
the Schwarzschild space–time in the form of
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For simplicity, G , c, h̄ and kB are regarded as unity through-
out this paper. Then, by solving Eq. (3), we obtain the positive 
(fermions) frequency outgoing solutions for the outside and inside 
region near the event horizon [13]

ψ I+
k = �e−iωu (r > r+),

ψ II+
k = �eiωu (r < r+) (4)

where � is a 4-component Dirac spinor [14], ω is a monochromatic 
frequency of the Dirac field, u = t − r∗ and r∗ = r + 2M ln[(r −
2M)/(2M)] represent the tortoise coordinate. By using the above 
complete orthogonal basis (Eqs. (4)), we then quantize the Dirac 
fields in Schwarzschild space–time

ψout =
∑
κ

∫
dk

(
aκ

k ψκ+
k + bκ+

k ψκ−
k

)
(5)

where κ = (I, II), aκ
k and bκ+

k denote the fermion annihilation and 
antifermion creation operators, while I and II correspond to the 
state of exterior and interior region, respectively.

On the other hand, the generalized light-like Kruskal coordi-
nates for the Schwarzschild black hole is introduced as

u = −4M ln
[
U/(4M)

]
, v = 4M ln

[
V /(4M)

]
, if r < r+,

u = −4M ln
[−U/(4M)

]
, v = 4M ln

[
V /(4M)

]
, if r > r+.

(6)

And based on the Damour–Ruffini’s suggestion [15] we find an-
other complete basis for positive energy modes by making an ana-
lytic continuation for Eqs. (4):

Υ I+
k = e2π Mωk ψ I+

k + e−2π Mωk ψ II−
−k ,

Υ II+
k = e2π Mωk ψ II+

k + e−2π Mωk ψ I−
−k . (7)

Then the decomposition of the Dirac fields in the Kruskal space–
time can be given in terms of these bases:

ψout =
∑
κ

∫
dk

[
2 cosh(4π Mωk)

]−1/2(
cκ

k Υ κ+
k + dκ+

k Υ κ−
k

)
(8)

where the cκ
k and dκ+

k represent the annihilation and creation op-
erators in the Kruskal vacuum.

Obviously, these two quantization processes are unequal, and 
their relationship can be reflected by the Bogoliubov transforma-
tions [16] between the creation and annihilation operators in the 
Schwarzschild and Kruskal coordinates. Given the Bogoliubov re-
lationships being diagonal, each annihilation operator cκ

k can be 
represented as

cI
k → (

e−8π Mωk + 1
)−1/2

aI
k − (

e8π Mωk + 1
)−1/2

bII+
k . (9)

Through a series of calculation, the vacuum and excited states 
of the Kruskal particle for mode k can be expressed in the basis of 
Schwarzschild Fock space

|0〉+K → (
e−ωk/T + 1

)−1/2
exp

[
e−ωk/2T aI+

k bII+
−k

]|0k〉+I |0−k〉−II
= (

e−ωk/T + 1
)−1/2|0k〉+I |0−k〉−II

+ (
eωk/T + 1

)−1/2|1k〉+I |1−k〉−II ,
|1〉+K → |1k〉+I |0−k〉−II , (10)

where modes k are the spherical harmonics with fixed values of 
the orbital angular momentum l and the total angular momen-
tum j, {|nk〉+I } and {|n−k〉−II } are the orthonormal bases for the 
outside and inside regions of the event horizon respectively, the 
superscript on the kets {+, −} denotes the particle and antipar-
ticle vacua, and T = 1

8π M is the Hawking temperature. Note that 
states |0〉 and |1〉 refer to mode population numbers. For brevity, 
{|nk〉+I } and {|n−k〉−II } is replaced by {|n〉I } and {|n〉II}, respectively.

3. Performance of various correlation measures under noise 
environments for Dirac particles in Schwarzschild space–time

Assume that Alice stays static with a detector which only de-
tects mode |n〉A in the asymptotically flat region undergoing the 
influence of decoherence environments, while Bob, with a detec-
tor sensitive only to mode |n〉B , freely falls toward a Schwarzschild 
black hole and hovers at a fixed finite nearest distance away from 
the event horizon. They share a generically entangled state

|φ〉 = α|00〉 +
√

1 − α2|11〉, (11)

where α is a state parameter that runs from 0 to 1. We then utilize 
Eq. (10) to rewrite Eq. (11) in terms of Minkowski mode for Alice 
and black hole mode for Bob. Since the exterior region is causally 
disconnected from the interior region of the black hole, the physi-
cal accessible density matrix ρAB I by tracing over the state of the 
interior region BII can be obtained in the form of

ρAB I = α2μ2|00〉〈00| + α2υ2|01〉〈01| + (
1 − α2)|11〉〈11|

+ αμ
√

1 − α2
(|00〉〈11| + |11〉〈00|), (12)

where μ = (e−ωk/T + 1)−1/2 and υ = (eωk/T + 1)−1/2.

3.1. Generalized amplitude damping channel

In this subsection, we discuss the case of Alice under gener-
alized amplitude damping (GAD) channel [17], where the system 
can both loss and gain excitations by interacting with the environ-
ment. Specifically, the spontaneous radiation of a particle exposed 
to a nonzero temperature can be modeled by the GAD channel. For 
simplicity, we directly utilize an expedient way, Kraus operators, to 
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