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We argue that the cosmological constant is exponentially suppressed in a candidate ground state of
loop quantum gravity as a nonperturbative effect of a holographic Fermi-liquid theory living on a
two-dimensional spacetime. Ashtekar connection components, corresponding to degenerate gravitational
configurations breaking large gauge invariance and CP symmetry, behave as composite fermions that
condense as in Bardeen–Cooper–Schrieffer theory of superconductivity. Cooper pairs admit a description
as wormholes on a de Sitter boundary.

© 2009 Elsevier B.V. All rights reserved.

If the observed dark energy is associated with all the contri-
butions from quantum fields to the cosmological constant Λ, we
have to explain why these are suppressed so as to render the vac-
uum energy Λ ∼ 10−120 (in reduced Planck units). The dark energy
problem is further obscured when the issue of general covariance
arises. For example, a zero occupation number vacuum state is not
invariant under general coordinate transformations [1]. One ap-
proach is to find a mechanism wherein the fundamental degrees of
freedom of quantum gravity dynamically regulate the cosmological
constant at the level of general covariance. Once a spacetime back-
ground is specified, we should be able to identify the root of the
ambiguity that we currently face in the evaluation of dark energy.

How does one truly deal with the cosmological constant prob-
lem in a background independent manner unless one includes
matter fields? Here we entertain the possibility that the vacuum
energy evaluated on a degenerate spacetime is responsible for a
dynamical suppression of Λ. This sector violates parity and is de-
scribed, at the quantum level, by a model with a four-fermion
interaction which reproduces that of Cooper pairing in Bardeen–
Cooper–Schrieffer (BCS) theory [2]. This correspondence is actually
more general and it can be shown that gravity allows for a dual de-
scription in terms of a nonlocally interacting Fermi liquid; which
is done in a companion paper, where the reader will find all the
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ingredients of this picture reviewed or developed in greater de-
tail [3].

To facilitate the study of the cosmological constant we employ
the Ashtekar formalism [4] of classical general relativity, which is
described by a complex connection field A ≡ Aα dxα ≡ Ai

ατi dxα

and a real triad E obeying a canonical equal-time Poisson algebra
{Ai

α(x), Eβ

j (y)} = iδβ
αδi

jδ(x,y), where Greek indices α,β, . . . denote
spatial components, Latin letters i, j, . . . label directions in the in-
ternal gauge space, and τi are generators of the su(2) gauge al-
gebra. Introducing the gauge field strength F k

αβ ≡ ∂α Ak
β − ∂β Ak

α +
εi j

k Ai
α A j

β and the magnetic field Bαi ≡ εαβγ F i
βγ /2 (εαβγ is the

Levi-Civita symbol), the scalar, Gauss, and vector gravitational con-
straints in the presence of a cosmological constant are

H = εi jk Ei · E j ×
(

Bk + Λ

3
Ek

)
= 0,

Gi = Dα Eα
i = 0,

Vα = (Ei × Bi)α = 0,

where (a × b)α = εαβγ aβbγ and Dα is the covariant derivative.
The Gauss constraint guarantees invariance under gauge transfor-
mations homotopic to the identity; the total Hamiltonian can be
made invariant also under large gauge transformations by shifting
the momentum E by the axial magnetic field [5,6].

A candidate background-independent quantum theory of grav-
ity at small scales is loop quantum gravity (LQG) [7], which will
provide the necessary interpretational framework. The triad be-
comes the operator Êα

i = −δ/δAi
α , while Âi

α is multiplicative in
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the naive connection representation. The quantum constraints on a
kinematical state Ψ (A) read

ĤΨ (A) = εi jlεαβγ
δ

δAαi

δ

δAβ j
Ŝ γ lΨ (A) = 0, (1)

ĜiΨ (A) = −Dα
δ

δAαi
Ψ (A) = 0, (2)

V̂αΨ (A) = − δ

δAi
β

F i
αβΨ (A) = 0, (3)

where S γ l ≡ Bγ l + (2k/π)Eγ l and

k ≡ 6π

Λ
(4)

in Lorentzian spacetime, and we adopted a factor ordering with
the triads on the left [4,8], which makes the quantum constraint
algebra consistent. A solution to all constraints (in their smeared
form) is the Chern–Simons state [9] (see [10,11] for reviews)

ΨCS = N exp

(
k

4π

∫
S3

YCS

)
, (5)

where N is a normalization constant and YCS is the Chern–Simons
form

YCS ≡ 1

2
tr

(
A ∧ dA + 2

3
A ∧ A ∧ A

)
, (6)

on the 3-sphere. Solution of the Hamiltonian constraint is guaran-
teed by the property

δ

δAγ k

∫
S3

YCS = 2Bγ k.

Non-Abelian gauge theories like QCD made invariant under large
gauge transformations admit instantonic degrees of freedom that
have phenomenological consequences [12,13]. Likewise, the Chern–
Simons ground state encodes degrees of freedom connecting fami-
lies of spacetimes. In Euclidean gravity (k ≡ iθ/π → i6π/Λ), differ-
ent sectors are connected by unitary large gauge transformations
which shift the topological phase θ by integer values. Under a
large gauge transformation characterized by winding number n,∫

YCS → ∫
YCS +4π2n [14], and the Chern–Simons state transforms

as ΨCS(A) → einθΨCS(A) [5].
The inclusion of matter perturbations reproduce standard quan-

tum field theory on de Sitter background [15], while linearizing the
quantum theory one recovers long-wavelength gravitons on de Sit-
ter [10]. In this sense the Chern–Simons state is a genuine ground
state of the theory. When the connection is real, the Chern–Simons
state closely resembles a topological invariant of knot theory [16].
This identification opens up a possibility of describing quantum
gravitational dynamics with the mathematics developed in knot
theory [17]. Also, it is generally believed that matter excitations
might be realized as particular states in the spin network space,
where braid configurations (corresponding to standard model gen-
erations) are expected to live [18].

Despite these and other beautiful properties, several issues have
been raised against the Chern–Simons state, including the problem
of normalizability (ΨCS is not normalizable), reality (A is self-dual),
and representation (we still lack a suitable measure in configura-
tion space allowing one to resort to the LQG holonomy represen-
tation). Nevertheless, the Chern–Simons state has passed several
independent consistency checks [11], and many of the above ob-
jections have been addressed at least partly in recent investiga-
tions [19,20].

Whenever a cosmological constant component is required by
observations at some point during the evolution of the universe,

agreement with physical observables lead to the phenomenologi-
cal hypothesis that the vacuum component is actually dynamical;
its behaviour can be reproduced by the matter (typically, scalar)
field characteristic of quintessence and inflationary models. In this
respect what we are going to do, promoting Λ to an evolving func-
tional Λ(A), is not uncommon. Nonetheless, the justification and
consequences of this step change perspective under the lens of
loop quantum gravity. Looking at Eq. (4), one can see that a dy-
namical cosmological constant corresponds to a deformation of the
topological sector of the quantum theory:

k → k(A). (7)

In QCD the partition function can be extended to a larger U (1)

symmetry, namely the Peccei–Quinn invariance under a rotation
by the θ angle [21]. Instanton effects can spontaneously break the
U (1) symmetry resulting in a light particle called axion. Likewise,
a large gauge transformation in Chern–Simons wavefunction is re-
garded as a U (1) rotation, so by deforming θ we break this sym-
metry. Classically, unless k is invariant under small gauge transfor-
mations, the only sectors compatible with Eq. (7) and the Gauss
constraint are degenerate (det E = 0). We exclude the most degen-
erate case rk E = 0, as we want to preserve at least part of the
canonical algebra. This leaves the cases rk E = 1,2.

The deformed quantum scalar constraint is defined with Λ(A)

to the left of triad operators; however, if the triad operator is de-
generate the scalar constraint plays no dynamical role. Therefore
it is consistent to assume the same attitude as in the discussion
of the Chern–Simons state, and require that the deformed state
Ψ∗ annihilates the deformed reduced constraint S αi∗ . The latter re-
quires the addition of a counterterm,(
Θ̂αi + Ŝ αi∗

)
Ψ∗ = Θ̂αi + 1

2

∫
S3

YCS
δ ln Λ(A)

δAαi
= 0, (8)

which breaks large gauge invariance. (Nonlocal effects, expected
from this symmetry breaking, will be discussed later.) The equation
of motion for the gauge field becomes

Ȧi
α = iε i

jk Eβ j
[

F k
αβ + Λ

2
εαβγ Eγ k − εαβγ

∫
S3

YCS
δ ln Λ(A)

δAγ k

]
. (9)

We now make a crucial connection which was demonstrated by
Jacobson for classical gravity [22]. One of the advantages of the
formulation of classical gravity via Ashtekar variables is the possi-
bility to have a well-defined causal structure [23] even when the
background metric is singular, as inside a black hole, at big-bang
or big-crunch events, or in processes where topology changes. In
particular, the degenerate sector with rk E = 1 describes a two-
dimensional spacetime whose future is a tipless wedge. The gravi-
electric line can be chosen to lie on the z direction; after some
other gauge fixing, Jacobson’s sector read

Ai
z = 0, A3

a = A3
a

(
xa), Ai �=3

a = Ai �=3
a (t, z), (10a)

Ez
i �=3 = 0, Ea

i = 0, Ez
3 = 1. (10b)

The classical equation of motion for the transverse–transverse
components of the connection is Ȧi

a = −iε i3
j∂z A j

a , which can be
written as the (1 + 1)-dimensional Dirac equation

γ 0ψ̇ + γ z∂zψ = 0, (11)

where γ μ are Dirac matrices and

ψ ≡

⎛
⎜⎜⎜⎝

i A1
1

A1
2

A2
1

i A2
2

⎞
⎟⎟⎟⎠ . (12)
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