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In this paper, we study a cosmological model in general relativity within the framework of spatially 
flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic), radiation, dark 
matter and dark energy, where the latter two components are described by Chevallier–Polarski–
Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and 
Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model 
parameters. We find that the current observational data offer tight constraints on the equation of state 
parameter of dark matter. We consider the perturbations and study the behavior of dark matter by 
observing its effects on CMB and matter power spectra. We find that the current observational data favor 
the cold dark matter scenario with the cosmological constant type dark energy at the present epoch.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

It is not a matter of debate now whether the Universe is ac-
celerating at the present epoch since it is strongly supported by 
various astronomical probes of complementary nature such as type 
Ia supernovae data (SN Ia) [1,2], galaxy redshift surveys [3], cos-
mic microwave background radiation (CMBR) data [4,5] and large 
scale structure [6]. Observations also suggest that there had been 
a transition of the Universe from the earlier deceleration phase to 
the recent acceleration phase [7]. We do not have a fundamental 
understanding of the root cause of the accelerating expansion of 
the Universe. We label our ignorance with the term “Dark Energy” 
(DE), which is assumed to permeate all of space and increase the 
rate of expansion of the Universe [8]. On the other hand, the inclu-
sion of DE into the prevailing theory of cosmology has been enor-
mously successful in resolving numerous puzzles that plagued this 
field for many years. For example, with prior cosmological models, 
the Universe appeared to be younger than its oldest stars. When 
DE is included in the model, the problem goes away. The most re-
cent CMB observations indicate that DE accounts for around three 
fourths of the total mass energy of the Universe [9,10]. However, 
the nature of DE is still unknown and various cosmological probes 
on theoretical and experimental fronts are in progress to resolve 
this problem. The simplest candidate for the DE is the cosmological 
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constant (Λ) or vacuum energy since it fits the observational data 
well. During the cosmological evolution, the cosmological constant 
has the constant energy density and pressure with the equation of 
state (EoS) wde = pde/ρde = −1. However, one has the reason to 
dislike the cosmological constant since it suffers from the theoreti-
cal problems such as the “fine-tuning” and “cosmic coincidence” 
puzzles [11]. Consequently, the dynamic DE models have been 
studied frequently in the literature. For instance, the Chevallier–
Polarski–Linder (CPL) parametrization of the EoS parameter of DE, 
which was first introduced in [12], has been frequently constrained 
with observational data in order to study the nature of dynamic DE 
(see [10] for recent constraints from Planck).

The ΛCDM (cosmological constant + cold dark matter) model, 
which is the standard model in modern cosmology, has been re-
markably successful in describing the Universe on large scales. 
However, it faces persistent challenges from observations on small 
scales that probe the innermost regions of dark matter halos and 
the properties of the Milky Way’s dwarf galaxy satellites. See 
[13,14] for reviews on the recent observational and theoretical sta-
tus of these “small scale controversies”. In this regard, the warm 
dark matter (WDM) is a plausible dark matter paradigm, which 
seems to solve many of small scale discrepancies while being in-
distinguishable from CDM on larger scales. In particle physics, the 
keV scale sterile neutrinos are believed to account for WDM. On 
the other hand, the fluid perspective of WDM has been investi-
gated in many studies. In [15], the bounds on EoS of DM were 
investigated using CMB, SN Ia and large scale structure data in 
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the cases of no entropy production and vanishing adiabatic sound 
speed. In [16], a simple method was suggested for measuring the 
EoS parameter of DM that combines kinematic and gravitational 
lensing data to test the widely adopted assumption of pressure-
less DM. Following the method, the authors in [17] found that 
the value of the EoS parameter of DM is consistent with pres-
sureless DM within the errors. The authors of [18,19] investigated 
the “warmness” of the DM fluid constraining cosmological models 
with constant EoS parameters of DM and DE by considering non-
interacting and interacting scenarios of DM and DE. The authors 
in [20] considered various cosmological models consisting of only 
DM and DE components by assuming constant and variable EoS 
parameters of the two components. They found observational con-
straints on these models using SN Ia, CMB and BAO data, and con-
cluded that WDM models are not favored over the ΛCDM model.

The authors in [21] investigated the bounds on EoS parame-
ter of DM using WMAP 5-year data and CMB + SDSS + SNLS 
data in a cosmological model based on spatially flat Friedmann–
Robertson–Walker space–time filled with ordinary matter (bary-
onic) and radiation, DE component acting as a cosmological con-
stant and DM component with constant EoS parameter wdm . The 
Friedmann equation in this model reads as

H = H0

√
Ωra−4 + Ωba−3 + Ωdma−3(1+wdm) + ΩΛ (1)

where a = 1/(1 + z) is the scale factor in terms of the redshift z; 
H0 is the Hubble constant and Ωi = 8πGρi/(3H2

0) is the density
parameter for the ith component. The authors in [21] stressed that 
in model (1), the background evolution is completely determined 
by the EoS of DM, and investigated the properties of DM by study-
ing the behavior on its perturbations. In a recent paper [22], the 
model (1) is constrained with the currently available observational 
data. In this work, the tighter constraints are obtained on the EoS 
parameter of DM due to high quality of observational data.

It may be noted that in the studies [21,22], the DM is charac-
terized by a constant EoS parameter wdm and the DE candidate is 
the cosmological constant with constant EoS parameter wde = −1. 
However, the choice of constant EoS parameter for DM is too re-
strictive [20]. Similarly, candidature of cosmological constant for 
DE is not satisfactory as discussed earlier. Therefore, in the present 
work, we consider the naturally motivated CPL parametrizations 
for the EoS parameters of DM and DE [20], respectively, given by

wde = wdm0 + wdma(1 − a), (2)

wde = wde0 + wdea(1 − a), (3)

where wdm0, wdma , wde0 and wdea are constants.
With these CPL forms of EoS of DM and DE, the Friedmann 

equation can be written as

H = H0

√
Ωra−4 + Ωba−3 + Ωdm f (a) + Ωde g(a) (4)

where

f (a) = e−3wdma(1−a)a−3(1+wdm0+wdma),

g(a) = e−3wdea(1−a)a−3(1+wde0+wdea).

It is easy to see that the model (1) is retrieved from the 
model (4) in the particular case wdma = 0 and wdea = 0. In the 
present study, we consider the generalized model (4) and study 
the constraints on variable EoS parameters of DM and DE by us-
ing the currently available observational data from SNLS3, BAO and 
Planck + WMAP9 + WiggleZ measurements of matter power spec-
trum. One may observe the strong degeneracy in the background 
evolution of the DM and DE components. We shall deal with this 
issue later. Next, we assume that DM component interacts with 

other components only gravitationally. Since DM is believed to be 
responsible for the gravitational instability and structure formation 
in the Universe, we consider the perturbations and study the be-
havior of DM by observing its effects on CMB and matter power 
spectra. Thus, the main objectives of this study include (i) con-
straining the CPL EoS parameters of DM and DE with the latest 
observational data, (ii) testing the warmness of DM, (iii) testing 
the behavior of DM by observing its effects on CMB and matter 
power spectra.

2. Perturbation equations

For a perfect fluid, one has the following perturbation equations 
for density contrast and velocity divergence in the synchronous 
gauge

δ̇i = −(1 + wi)

(
θi + ḣ

2

)
+ ẇi

1 + wi
δi

− 3H
(
c2

s,eff − c2
s,ad

)[
δi + 3H(1 + wi)

θi

k2

]
, (5)

θ̇i = −H
(
1 − 3c2

s,eff

)
θi + c2

s,eff

1 + wi
k2δi − k2σi, (6)

following the notations of [23], see also [24,22]. We have used the 
following definition of the adiabatic sound speed

c2
s,ad = ṗi

ρ̇i
= wi − ẇi

3H(1 + wi)
, (7)

where c2
s,eff is the effective sound speed in the rest frame of 

the ith fluid. In general, c2
s,eff is a free model parameter, which 

measures the entropy perturbations through its difference to the 
adiabatic sound speed via the relation wiΓi = (c2

s,eff − c2
s,ad)δ

rest
i . 

Thus, wiΓi characterizes the entropy perturbations. Further, δrest
i =

δi + 3H(1 + wi)θi/k2 gives a gauge-invariant form for the entropy 
perturbations. With these definitions, the microscale properties of 
the energy component are characterized by three quantities, i.e., 
the EoS parameters wi , the effective sound speed c2

s,eff and the 
shear perturbation σi . In this work, we assume zero shear pertur-
bations for the DM and DE. Since the DM is responsible for the 
formation of the large scale structure in our Universe, we fix the 
effective speed of sound c2

s,eff = 0 for DM in this work.

3. Observational constraints

3.1. Effects of DM parameters on CMB TT and matter power spectra

Here we analyze that how the DM parameters wdm0 and wdma
affect the CMB TT and matter power spectra. For this purpose, we 
fix the other relevant model parameters to their mean values as 
given in Table 1 and vary one of these two DM parameters wdm0
and wdma around its mean value. The effects to the CMB TT power 
spectrum are shown in Fig. 1. We see that the positive values of 
DM parameters wdm0 and wdma will decrease the equality time of 
matter and radiation when the other relevant cosmological model 
parameters are fixed. Consequently, the amplitudes of the peaks of 
the CMB are depressed and the positions of the peaks are moved 
to the right side. On the large scale where l < 10, the curves are 
increased when the values of wdm0 and wdma are positive due to 
the integrated Sachs–Wolfe effect.

The effects of the DM parameters wdm0 and wdma on the mat-
ter power spectrum are shown in Fig. 2, where the redshift is fixed 
to z = 0. We observe that these effects to the matter power spec-
trum are similar to the ones as analyzed in Ref. [22]. The positive 
values of wdm0 and wdma move the matter and radiation equality 
to earlier times and increase the matter power spectrum.
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