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Basis Light-front Quantization has been proposed as a nonperturbative framework for solving quantum 
field theory. We apply this approach to Quantum Electrodynamics and explicitly solve for the light-
front wave function of a physical electron. Based on the resulting light-front wave function, we evaluate 
the electron anomalous magnetic moment. Nonperturbative mass renormalization is performed. Upon 
extrapolation to the infinite basis limit our numerical results agree with the Schwinger result obtained 
in perturbation theory to an accuracy of 0.06%.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Nonperturbative approaches in quantum field theory are needed 
for many applications. One important application is to study bound 
state problems in strongly interacting systems, e.g., solving for the 
hadron structure in Quantum Chromodynamics (QCD). The Basis 
Light-front Quantization (BLFQ) approach has recently been con-
structed [1,2] as a nonperturbative framework for quantum field 
theory in the Hamiltonian framework [3]. In previous work [2]
this method has been applied to QED for the anomalous mag-
netic moment of a physical electron in a cavity formed by an 
external transverse harmonic-oscillator potential, which acts as a 
regulator of QED dynamics. In addition, the extension to strong 
time-dependent external field applications (tBLFQ) has been devel-
oped and successfully applied [4,5].

In this work we employ BLFQ to compute the electron anoma-
lous magnetic moment in vacuum,1 which was first calculated in 
perturbation theory in Ref. [7]. For an alternative nonperturbative 
calculation in light-front dynamics, see Refs. [8,9].
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1 In addition, several improvements and corrections are carried out over Ref. [2]: 
1) we correct the operator used in [2] for extracting the anomalous magnetic mo-
ment by adopting the standard Pauli form factor operator [6]; 2) we correct a 
numerical error in [2], which led to an overestimate of the interaction terms in 
QED Light-front Hamiltonian by a factor of 2; 3) we optimize the computational ef-
ficiency on both the analytic and coding level and implement parallel computing so 
that the BLFQ calculation can take advantage of currently available supercomputers.

2. Light-front Hamiltonian in BLFQ basis

In light-front dynamics, physical processes are described in 
terms of light-front coordinates, which consist of light-front time 
x+ ≡ x0 + x3, the longitudinal direction x− = x0 − x3 as well as 
the transverse coordinates x⊥ = {x1, x2}. We begin with the light-
front QED Hamiltonian which can be derived from the ordinary La-
grangian through the standard Legendre transform with the adop-
tion of the light-cone gauge (A+ = 0), where the photon field has 
physical polarization and positive metric. The resulting QED light-
front Hamiltonian takes the following form,

P− =
∫

d2x⊥dx−
[

1

2
Ψ̄ γ + m2

e + (i∂⊥)2

i∂+ Ψ + 1

2
A j(i∂⊥)2

A j

+ ejμ Aμ + e2

2
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(i∂+)2
j+

+ e2

2
Ψ̄ γ μ Aμ

γ +

i∂+ γ ν AνΨ

]
, (1)

where Ψ and Aμ are the fermion and gauge boson fields, respec-
tively. The first and second terms are their corresponding kinetic 
energy terms, and the remaining three terms describe the inter-
action between the fermion and gauge boson fields. Specifically, 
these are the vertex interaction, the instantaneous-photon interaction
and the instantaneous-fermion interaction in order of appearance in 
Eq. (1). The me and e are the bare electron mass and the bare 
electromagnetic coupling constant, respectively. In this work we 
only keep |e〉 and |eγ 〉; i.e., two Fock sectors, in our basis (see be-
low). Consequently, the instantaneous-photon interaction does not 
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contribute since it involves Fock sectors with one more electron 
(or positron). Moreover, the instantaneous fermion interaction ei-
ther contributes to overall renormalization factors, which do not 
affect the intrinsic structure of the physical electron, or contains 
small-x divergences which need to be cancelled by explicit fermion 
exchange contributions from higher Fock-sectors. Thus, we defer 
the inclusion of the instantaneous interactions and adopt the fol-
lowing Hamiltonian for this work,2

P− =
∫

d2x⊥dx−
[

1

2
Ψ̄ γ + m2

e + (i∂⊥)2

i∂+ Ψ + 1

2
A j(i∂⊥)2

A j

+ ejμ Aμ

]
. (2)

In the second step we construct the Fock-sector basis expan-
sion. A physical electron, which is the focus of this work, receives 
contributions from the multiple Fock-sectors,

|ephys〉 = a|e〉 + b|eγ 〉 + c|eγ γ 〉 + d|eeē〉 + . . . , (3)

and each Fock-sector itself consists of an infinite number of basis 
states. For the purpose of numerical calculations we adopt both a 
Fock-sector truncation and limits on the basis states in each sector. 
In this work we make the lowest nontrivial truncation by retaining 
the |e〉 and |eγ 〉 Fock-sectors only. This is sufficient for obtaining 
the (nonperturbative) electron wave function accurate to the lead-
ing order of the electromagnetic coupling constant α = e2

4π .
For each Fock-particle we employ a 2D-harmonic oscillator (HO) 

wave function, Φnm(p⊥), to describe its transverse degrees of free-
dom and a plane-wave, e−ip+x−/2, to describe its longitudinal mo-
tion. For each Fock-particle the (transverse) 2D-HO wave function 
carries the radial quantum number n and angular quantum num-
ber m, (as well as a parameter b, setting the scale of the HO wave 
functions, e.g., in exp [−(p⊥)2/(2b2)]). The (longitudinal) plane-
wave carries one quantum number, k = p+L/(2π), which is pro-
portional to the longitudinal momentum p+ , and L is the length 
of the longitudinal “box” in which we compactify the longitudinal 
degrees of freedom of the system. With the additional quantum 
number λ for the helicity, 4 quantum numbers label each single 
particle state.

In the transverse directions we implement the “Nmax” trunca-
tion in analogy with the 3D-HO truncation in nuclear many-body 
theory [11,12]. Define a sum, Nβ , over the HO quantum numbers 
for all Fock particles, i, in a specific basis state (here we discuss 
only the quantum numbers of the transverse spatial motion), |β〉, 
according to,

Nβ ≡
∑

i

2ni + |mi| + 1. (4)

We truncate the basis states by eliminating states with Nβ larger 
than a chosen cutoff Nmax. Increasing Nmax not only enhances the 
resolution but also provides a higher ultraviolet cutoff and a lower 
infrared cutoff for the particles’ transverse motion.

In the longitudinal direction we perform basis truncation by 
imposing (anti)periodic boundary condition for (fermions) bosons, 
such that the longitudinal momentum quantum number k for each 
Fock particle can only take (half-)integers. Being a good quan-
tum number for the QED Hamiltonian, the total longitudinal mo-
mentum summed over all Fock particles in a basis state, P+ =∑

i p+
i ∝ K , acts as an additional cutoff. Larger P+(K ) allows more 

2 The instantaneous fermion or photon interaction can also form a contact inter-
action in the single-electron sector, as mentioned in Ref. [10]. This type of interac-
tions can, however, be absorbed into the fermion mass counterterm and does not 
need to be included explicitly in the Hamiltonian (see Section 3).

possible partitions of longitudinal momentum among Fock parti-
cles in a basis state and thus leads to a higher resolution in the 
longitudinal degrees of freedom.

Therefore, in order to specify the truncated basis, we need the 
following information: 1) Fock-sectors included; 2) truncation pa-
rameters, Nmax (transverse) and K (longitudinal); 3) 2D-HO basis 
parameter b. The longitudinal period L is not needed due to the 
longitudinal boost-invariance of light-front dynamics: the light-
front wave functions only depend on the longitudinal momen-
tum fraction xi = p+

i /P+ = ki/K . In this work we retain only |e〉
and |eγ 〉 Fock-sectors, and compare numerical results evaluated in 
bases of different Nmax and K . Although in the Nmax → ∞ limit, 
results should be independent of b, we choose b = M = 0.511 MeV
as the natural value for calculations at finite Nmax. The (in-) de-
pendence of b in the numerical results for the electron anomalous 
magnetic moment ae , around this value of b, will be checked in 
Section 4.

Next we express our field operators in the BLFQ basis, specifi-
cally for the fermion and gauge boson field,

Ψ (x) =
∑
β̄

1√
2L

∫
d2 p⊥

(2π)2

[
bβ̄Φnm

(
p⊥)
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β̄
Φ∗

nm

(
p⊥)

v(p, λ)eip·x], (5)

Aμ(x) =
∑
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1√
2Lp+

∫
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(2π)2

[
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(
p⊥)
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+ a†
β̄
Φ∗

nm

(
p⊥)

ε∗
μ(p, λ)eip·x], (6)

where the u and v are the Dirac spinors for fermions and anti-
fermions, respectively. The εμ is the photon polarization vector. 
The p · x = p+x−/2 − p⊥x⊥ is the inner product between the 
3-momentum p = {p+, p⊥} and the coordinate x = {x−, x⊥}. The 
b†

β̄
, d†

β̄
and a†

β̄
are creation operators for the fermion, antifermion 

and gauge boson fields, respectively, with quantum numbers β̄ =
{k, n, m, λ}. They satisfy the (anti)commutation relations
{

bβ̄ ,b†
β̄ ′

} = {
dβ̄ ,d†

β̄ ′
} = [

aβ̄ ,a†
β̄ ′

] = δβ̄β̄ ′ . (7)

Through Eqs. (2) and (7), we are able to write down the light-
front QED Hamiltonian in the BLFQ basis. Since we are interested 
in the mass eigenspectrum contributed by the intrinsic rather than 
center-of-mass motion, we add an appropriate Lagrange multiplier 
term to the input light-front QED Hamiltonian. This has the ef-
fect of shifting the states with excited center-of-mass motion to 
high mass and the low-lying spectrum comprises states with low-
est center-of-mass motion, following the techniques of nuclear 
many-body theory. The resulting low-lying states can be written 
as a simple product of internal and center-of-mass motion [11,12]
(see [13] for more details).

Upon diagonalization of the resulting sparse Hamiltonian ma-
trix, one obtains its eigenvalue spectrum and corresponding eigen-
vectors. In this work, the ground state of the Hamiltonian, with 
net fermion number being one (n f = 1), is identified as the physi-
cal electron. Its eigenvalue, P−

e , gives the electron mass according 
to M2 ≡ P−

e P+
e − P 2⊥ , where P⊥ is the total transverse momentum 

operator.

3. Renormalization

Before we are ready to obtain the electron wave function, one 
more technical detail needs to be worked out: renormalization. In 
BLFQ, a nonperturbative approach, the renormalization procedures 
are different from those adopted in perturbation theory [14].
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