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The rotation of a Kerr black hole splits its low-frequency spectrum in two, so it was so far unclear
why the known highly-damped resonances show no splitting. We find the missing, split sector, with
spin s quasinormal modes approaching the total reflection frequencies w(n € N) = —Q2A ] —ik(n — ),
where £2, k and AJ are the horizon’s angular velocity, surface gravity, and induced change in angular

momentum. Surprisingly, the new sector is at least partly polar, and corresponds to reversible J
transitions. Its fundamental branch converges quickly, possibly affecting gravitational wave signals.
A simple interpretation of the Carter constant of motion is proposed.
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1. Introduction

The natural vibrational modes of a black hole, known as quasi-
normal modes (QNMs) due to their typically fast damping, play an
important role in the classical study of black holes, in the search
for a theory of quantum gravity, and in the gauge/gravity duality;
see [1,2] for reviews.

The highly-damped modes, in particular, tend to show an inter-
esting structure with simple or no dependence upon the vibration
parameters. It was suggested that such an asymptotic QNM corre-
sponds directly to a quantum transition, and for a Schwarzschild
black hole may be interpreted as an elementary change in its sur-
face area [3]. The subsequent flurry of black hole spectroscopy
research produced many results, but for the most part, the asymp-
totic QNMs defied a simple interpretation along the lines of the
correspondence principle [1].

Rotating, electrically neutral (Kerr) black holes are of special
interest, due to their astronomical prevalence and as targets for
gravitational wave searches. The asymptotic QNMs of rotating black
holes were computed numerically [4] and analytically [5], but the
resulting expressions for the frequencies are too complicated to ad-
mit a simple interpretation along the lines of [3]. However, when
combined with the related total-reflection and total-transmission
modes, these QNMs show an interesting structure, which provides
hints at the microscopic description of the black hole [6].

Curiously, while the rotation is known to split the spectrum
into two distinct branches of QNMs at low frequencies [7], only
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one asymptotic branch has been reported thus far, with no sign of
splitting. These modes were identified as prolate, equatorial vibra-
tions [6]. It is natural to ask what happens at asymptotic frequen-
cies to the second QNM branch, and to polar excitations in general.
The question is further motivated by some contradictory results in
the literature, and because the very existence of a second asymp-
totic sector was largely overlooked.

We compute the Kerr QNMs up to high overtones, in order to
uncover the fate of the elusive second branch. The transmission—
reflection problem is then analyzed in the oblate limit, unexpect-
edly found to be relevant to the new sector. Some physical impli-
cations of the surprisingly simple form of the new QNMs are then
discussed.

2. Formalism

Consider a Kerr black hole of mass M and angular momentum
J =aM, with linear, massless field perturbations following Teukol-
sky’s equation [8]. Decomposition into radial and angular wave
functions, syim(x) = e!M$=®D (11 = cosO)sRim (), leads to sep-
arate angular and radial equations linked by a coupling constant
sAmm, Which is closely related to the Carter constant [9], as we
argue below. Here, x = (t, 1,6, ¢) are Boyer-Lindquist coordinates,
and [, m are angular, azimuthal harmonic indices. The spin-weight
parameter s gives the spin of the field, specializing the analysis
to gravitational (s = —2), electromagnetic (s = —1), scalar (s = 0),
or two-component fermion (s = —1/2) fields. We use Planck units
where G =c =kg =h =1, and shall henceforth omit the indices s,
I, m when possible.
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Teukolsky’s angular equation is [8]

a0 =]

[(m + SM)2

T (aa)u) +2aa)sp,—s—A]S (1)

The regularity of S at the poles = £1 picks out a discrete set
of solutions, known as spin-weighted spheroidal wave functions
([10], and references therein) and corresponding eigenvalues A(w).
For s =0, these functions reduce to the familiar spheroidal wave
functions [11].

The radial equation can be written in the form [5]

d? st1
(d—2+a) 1% )(A_R)zo, (2)

where A =r% — 2Mr + a® vanishes at both horizons, r. = M +
(M? —a?)1/2, Here we defined (wV)? = p? + sp2,

— a’Alw? — 4Marowm — (A — a®>)ym? —qA

(psA)? = 2i[rA — M(? — a®)lw — (M — r)[2iam + s(M — r)], and
g=A+s—m? The QNMs are solutions of Egs. (1) and (2) for
physical boundary conditions of purely outgoing waves at both
spatial infinity and the event horizon, i.e. crossing into the black
hole. Equivalently, these solutions correspond to transmission and
reflection by the black hole when the incident wave is negligible.
For given black hole (M, a) and field (s,I,m) parameters, the
above constraints pick an infinite, discrete set of QNM solutions.
These modes are labelled by an index n € N, and are specified
by their complex frequency w = wg + iw; and coupling con-
stant A, where w; < 0 (time decay) diverges as n — oco. They
show a complex-conjugate pairing symmetry, where for each
{n,l,m}-QNM there is an {n,l, —m}-mode that satisfies [7]

2 _ L0 +a)?
P
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We thus consider only m > 0, so each mode is unique.

In addition to the pairing symmetry, the rotation of the black
hole introduces a Zeeman-like splitting of the QNMs, such that for
given parameters n, [ and m > 0 there are actually two modes, each
belonging to a distinct QNM branch [7], which we label + (new
branch) and — (known branch). Each such QNM pair coalesces into
a single Schwarzschild mode as a — 0.

3. Series solution

For purely imaginary large w, S is thought to be of the prolate-
type, such that [11]

AP =iAjaw + Ag + O (jaw| "), (5)

where Ay =2L+1, L =1—max(|m|,|s|) [10], and Ag is a constant;
Ag=m?—L(L+1)/2—3/4 for s =0. It was previously argued that
this applies to all QNMs in the highly-damped regime [4]. How-
ever, this assumption was found [4,5] to yield only one, equatorial
[6] branch of QNMs, which therefore questions the validity of the
assertion. To search for all QNMs, here we make no assumption re-
garding A, but rather solve both the angular equation (1) and the
radial equation (2) simultaneously.

Low QNM frequencies are usually computed by series expan-
sions of R and S, each leading to its own three-term recurrence
relation. These commonly-used recursions were derived in [7] and
will not be reproduced here; a simplified form of the radial recur-
sion may be found in [12]. The QNMs are determined by requiring
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Fig. 1. Absolute value of the coupling constant A for fundamental modes in the new
branch (circles) and in the known branch (diamonds), for n = 30 (small symbols),
40 (medium), and 50 (large). The corresponding oblate (solid curves; Eq. (6)) and
prolate (dashed curves; Eq. (5) with Ag =9) formulae fit well above an increasingly
smaller threshold as(n).

that both recursions simultaneously converge, leading to an infi-
nite set of QNM parameter pairs {wy, An}.

In the highly-damped regime, n > 1, the series computa-
tion becomes increasingly challenging numerically. To find such
QNMs, including both branches, we start with pairs of easily com-
puted [13] Schwarzschild modes wni, defined such that R(w;) =
—(w;) > 0. Then we gradually increase a from 0, in sufficiently
small steps to allow our root-finding algorithm to converge. The
results are illustrated in Figs. 1 and 2.

Fig. 1 depicts A for gravitational modes with —s =1=m =2
(henceforth: fundamental modes). In the Schwarzschild limit,
A(@=0)=I(l+41)—s(s+1) for both branches [8]; AT, A~ remain
comparable at small values of the rotation parameter a. However,
beyond a certain threshold ag, the two branches show markedly
different behaviors. While the known branch asymptotes to the fa-
miliar prolate scaling of Eq. (5), the new branch asymptotes to the
oblate limit, given by [14]

AD) _ —m?+2s+1)+ 0(law|™"), (6)

where g was derived in [15], and in our case reduces to

_J1-m+2(1+5) ifm>1+42s;
=11 +!—mod(l +m,2) otherwise.

—(aw)? + 2qaw — (q2

(7)

The split point ag becomes gradually smaller at higher n; compar-
ing Egs. (5) and (6) suggests that as ~ |A1/wj|, such that as — 0 in
the highly-damped limit.

Prolate and oblate behaviors are known to interchange in the
complex w plane, along branch cuts emanating from points where
different eigenvalues A coalesce (e.g., [16], and references therein).
Our results suggest that such branch cuts are present near the
imaginary axis for large |w|, at least for the fundamental mode
(but see [10]). Note that both oblate and prolate asymptotic ex-
pansions are highly degenerate, A<Ob) ~ Aff? when 0 <[ —m+2s
is even, and (at least when s = 0) Af,fr) >~ A(f,g.

Fig. 2 shows the real (figure body) and imaginary (inset) parts
of the QNM frequencies of various modes. Consider first the new
branch of fundamental modes, depicted as empty circles of size
corresponding to n. It quickly converges to wg = m$2 (solid curve),
where 2 =4ma/A and A=4n (r%r +a?) are the angular velocity
and surface area of the (outer) horizon. Non-fundamental m > 0
modes do not converge as rapidly with n, but are seen to approach
or oscillate around this value. All m = 0 modes (filled symbols)
rapidly converge to wg = 0.
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