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The rotation of a Kerr black hole splits its low-frequency spectrum in two, so it was so far unclear 
why the known highly-damped resonances show no splitting. We find the missing, split sector, with 
spin s quasinormal modes approaching the total reflection frequencies ω(n ∈ N) = −Ω� J − iκ(n − s), 
where Ω , κ and � J are the horizon’s angular velocity, surface gravity, and induced change in angular 
momentum. Surprisingly, the new sector is at least partly polar, and corresponds to reversible J
transitions. Its fundamental branch converges quickly, possibly affecting gravitational wave signals. 
A simple interpretation of the Carter constant of motion is proposed.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The natural vibrational modes of a black hole, known as quasi-
normal modes (QNMs) due to their typically fast damping, play an 
important role in the classical study of black holes, in the search 
for a theory of quantum gravity, and in the gauge/gravity duality; 
see [1,2] for reviews.

The highly-damped modes, in particular, tend to show an inter-
esting structure with simple or no dependence upon the vibration 
parameters. It was suggested that such an asymptotic QNM corre-
sponds directly to a quantum transition, and for a Schwarzschild 
black hole may be interpreted as an elementary change in its sur-
face area [3]. The subsequent flurry of black hole spectroscopy 
research produced many results, but for the most part, the asymp-
totic QNMs defied a simple interpretation along the lines of the 
correspondence principle [1].

Rotating, electrically neutral (Kerr) black holes are of special 
interest, due to their astronomical prevalence and as targets for 
gravitational wave searches. The asymptotic QNMs of rotating black 
holes were computed numerically [4] and analytically [5], but the 
resulting expressions for the frequencies are too complicated to ad-
mit a simple interpretation along the lines of [3]. However, when 
combined with the related total-reflection and total-transmission 
modes, these QNMs show an interesting structure, which provides 
hints at the microscopic description of the black hole [6].

Curiously, while the rotation is known to split the spectrum 
into two distinct branches of QNMs at low frequencies [7], only 
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one asymptotic branch has been reported thus far, with no sign of 
splitting. These modes were identified as prolate, equatorial vibra-
tions [6]. It is natural to ask what happens at asymptotic frequen-
cies to the second QNM branch, and to polar excitations in general. 
The question is further motivated by some contradictory results in 
the literature, and because the very existence of a second asymp-
totic sector was largely overlooked.

We compute the Kerr QNMs up to high overtones, in order to 
uncover the fate of the elusive second branch. The transmission–
reflection problem is then analyzed in the oblate limit, unexpect-
edly found to be relevant to the new sector. Some physical impli-
cations of the surprisingly simple form of the new QNMs are then 
discussed.

2. Formalism

Consider a Kerr black hole of mass M and angular momentum 
J = aM , with linear, massless field perturbations following Teukol-
sky’s equation [8]. Decomposition into radial and angular wave 
functions, sψlm(x) = ei(mφ−ωt)

s Slm(μ ≡ cos θ)s Rlm(r), leads to sep-
arate angular and radial equations linked by a coupling constant 
s Alm , which is closely related to the Carter constant [9], as we 
argue below. Here, x = (t, r, θ, φ) are Boyer–Lindquist coordinates, 
and l, m are angular, azimuthal harmonic indices. The spin-weight 
parameter s gives the spin of the field, specializing the analysis 
to gravitational (s = −2), electromagnetic (s = −1), scalar (s = 0), 
or two-component fermion (s = −1/2) fields. We use Planck units 
where G = c = kB = h̄ = 1, and shall henceforth omit the indices s, 
l, m when possible.
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Teukolsky’s angular equation is [8]

d

dμ

[(
1 − μ2) dS

dμ

]

=
[

(m + sμ)2

1 − μ2
− (aωμ)2 + 2aωsμ − s − A

]
S. (1)

The regularity of S at the poles μ = ±1 picks out a discrete set 
of solutions, known as spin-weighted spheroidal wave functions 
([10], and references therein) and corresponding eigenvalues A(ω). 
For s = 0, these functions reduce to the familiar spheroidal wave 
functions [11].

The radial equation can be written in the form [5](
d2

dr2
+ ω2 V 2

)(
�

s+1
2 R

) = 0, (2)

where � ≡ r2 − 2Mr + a2 vanishes at both horizons, r± ≡ M ±
(M2 − a2)1/2. Here we defined (ωV )2 ≡ p2

r + sp2
s ,

p2
r ≡ [(r2 + a2)2 − a2�]ω2 − 4Marωm − (� − a2)m2 − q�

�2
, (3)

(ps�)2 ≡ 2i[r� − M(r2 − a2)]ω − (M − r)[2iam + s(M − r)], and 
q ≡ A + s − m2. The QNMs are solutions of Eqs. (1) and (2) for 
physical boundary conditions of purely outgoing waves at both 
spatial infinity and the event horizon, i.e. crossing into the black 
hole. Equivalently, these solutions correspond to transmission and 
reflection by the black hole when the incident wave is negligible.

For given black hole (M, a) and field (s, l, m) parameters, the 
above constraints pick an infinite, discrete set of QNM solutions. 
These modes are labelled by an index n ∈ N, and are specified 
by their complex frequency ω = ωR + iωI and coupling con-
stant A, where ωI < 0 (time decay) diverges as n → ∞. They 
show a complex–conjugate pairing symmetry, where for each 
{n, l, m}-QNM there is an {n, l, −m}-mode that satisfies [7]

ωn,l,m = −ω∗
n,l,−m and An,l,m = A∗

n,l,−m. (4)

We thus consider only m ≥ 0, so each mode is unique.
In addition to the pairing symmetry, the rotation of the black 

hole introduces a Zeeman-like splitting of the QNMs, such that for 
given parameters n, l and m > 0 there are actually two modes, each 
belonging to a distinct QNM branch [7], which we label + (new 
branch) and − (known branch). Each such QNM pair coalesces into 
a single Schwarzschild mode as a → 0.

3. Series solution

For purely imaginary large ω, S is thought to be of the prolate-
type, such that [11]

A(pr) = i A1aω + A0 + O
(|aω|−1), (5)

where A1 = 2L + 1, L ≡ l − max(|m|, |s|) [10], and A0 is a constant; 
A0 = m2 − L(L + 1)/2 − 3/4 for s = 0. It was previously argued that 
this applies to all QNMs in the highly-damped regime [4]. How-
ever, this assumption was found [4,5] to yield only one, equatorial 
[6] branch of QNMs, which therefore questions the validity of the 
assertion. To search for all QNMs, here we make no assumption re-
garding A, but rather solve both the angular equation (1) and the 
radial equation (2) simultaneously.

Low QNM frequencies are usually computed by series expan-
sions of R and S , each leading to its own three-term recurrence 
relation. These commonly-used recursions were derived in [7] and 
will not be reproduced here; a simplified form of the radial recur-
sion may be found in [12]. The QNMs are determined by requiring 

Fig. 1. Absolute value of the coupling constant A for fundamental modes in the new 
branch (circles) and in the known branch (diamonds), for n = 30 (small symbols), 
40 (medium), and 50 (large). The corresponding oblate (solid curves; Eq. (6)) and 
prolate (dashed curves; Eq. (5) with A0 = 9) formulae fit well above an increasingly 
smaller threshold as(n).

that both recursions simultaneously converge, leading to an infi-
nite set of QNM parameter pairs {ωn, An}.

In the highly-damped regime, n � 1, the series computa-
tion becomes increasingly challenging numerically. To find such 
QNMs, including both branches, we start with pairs of easily com-
puted [13] Schwarzschild modes ω±

n , defined such that 	(ω+
n ) =

−	(ω−
n ) > 0. Then we gradually increase a from 0, in sufficiently 

small steps to allow our root-finding algorithm to converge. The 
results are illustrated in Figs. 1 and 2.

Fig. 1 depicts A for gravitational modes with −s = l = m = 2
(henceforth: fundamental modes). In the Schwarzschild limit, 
A(a = 0) = l(l + 1) − s(s + 1) for both branches [8]; A+ , A− remain 
comparable at small values of the rotation parameter a. However, 
beyond a certain threshold as , the two branches show markedly 
different behaviors. While the known branch asymptotes to the fa-
miliar prolate scaling of Eq. (5), the new branch asymptotes to the 
oblate limit, given by [14]

A(ob) = −(aω)2 + 2qaω − (
q2 − m2 + 2s + 1

) + O
(|aω|−1), (6)

where q was derived in [15], and in our case reduces to

q =
{

1 − m + 2(l + s) if m > l + 2s;
1 + l − mod(l + m,2) otherwise.

(7)

The split point as becomes gradually smaller at higher n; compar-
ing Eqs. (5) and (6) suggests that as ∼ |A1/ωI |, such that as → 0 in 
the highly-damped limit.

Prolate and oblate behaviors are known to interchange in the 
complex ω plane, along branch cuts emanating from points where 
different eigenvalues A coalesce (e.g., [16], and references therein). 
Our results suggest that such branch cuts are present near the 
imaginary axis for large |ω|, at least for the fundamental mode 
(but see [10]). Note that both oblate and prolate asymptotic ex-
pansions are highly degenerate, A(ob)

l � A(ob)

l+1 when 0 ≤ l − m + 2s

is even, and (at least when s = 0) A(pr)
m � A(pr)

−m .
Fig. 2 shows the real (figure body) and imaginary (inset) parts 

of the QNM frequencies of various modes. Consider first the new 
branch of fundamental modes, depicted as empty circles of size 
corresponding to n. It quickly converges to ωR = mΩ (solid curve), 
where Ω = 4πa/A and A = 4π(r2+ + a2) are the angular velocity 
and surface area of the (outer) horizon. Non-fundamental m > 0
modes do not converge as rapidly with n, but are seen to approach 
or oscillate around this value. All m = 0 modes (filled symbols) 
rapidly converge to ωR = 0.
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