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We investigate the existence and properties of kink-like solitons in a class of models with two interacting 
scalar fields. In particular, we focus on models that display both double and single-kink solutions, 
treatable analytically using the Bogomol’nyi–Prasad–Sommerfield bound (BPS). Such models are of 
interest in applications that include Skyrmions and various superstring-motivated theories. Exploring 
a region of parameter space where the energy for very different spatially-bound configurations is 
degenerate, we show that a newly-proposed momentum–space entropic measure called Configurational 
Entropy (CE) can distinguish between such energy-degenerate spatial profiles. This information-theoretic 
measure of spatial complexity provides a complementary perspective to situations where strictly energy-
based arguments are inconclusive.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Since the Scottish channel engineer John Scott Russell first dis-
covered the existence of solitary waves in 1834 [1] and, in particu-
lar, since the 1960s and 70s [2–7], the study of nonlinear solutions 
of PDEs that preserve their spatial profile has attracted much in-
terest in many areas of physics, such as in cosmology [8], field 
theory [9,10], condensed matter physics [11], and others [12]. In 
high-energy physics, solitons [10–13] are generally known as solu-
tions of nonlinear field equations whose energy density is localized 
in space. Certain soliton solutions, as in the case of sine-Gordon 
kinks [13], have the interesting feature of keeping their shape 
unaltered after scattering with other solitons. (Here, we will use 
“soliton” to characterize solutions with localized energy-density, 
even if many may not maintain their spatial profile after scatter-
ing.)

Nowadays, the properties of nonlinear configurations are well 
understood in a wide class of models with or without spontaneous 
symmetry breaking, and with or without a nontrivial topological 
vacuum structure. Of particular interest to us here are kinks, non-
dissipative solutions with an associated topological charge. Kink 
configurations arise in (1 + 1)-dimensional field theories when the 
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scalar field potential has two or more degenerate minima. A well-
known example is the φ4-kink, also called the Z2 kink [9,14]. In 
this case, a single real scalar field φ interpolates between the two 
degenerate minima of the potential.

A powerful insight to solve nonlinear problems analytically 
was introduced by Bogomol’nyi [15], Prasad and Sommerfield [16]. 
Known as the BPS bound, it is based on obtaining a first-order dif-
ferential equation from the energy functional. With this method, it 
is possible to find solutions that minimize the energy of the con-
figuration while ensuring their stability. A large variety of models 
in the literature use the BPS approach, such as solutions found in 
Skyrme models [17,18], monopoles [19,20], supersymmetric black 
holes [21], supergravity [22], and K -field theories [23].

A few decades ago, it was shown that it is possible to find 
kink-like solutions for certain coupled scalar field theories in 
(1 + 1)-dimensional models. Presented by Rajaraman, the approach 
is based on a “trial and error” method which leads to important 
particular solutions [24]. Bazeia and collaborators [25] showed that 
solutions of certain second-order differential systems with two or 
more scalar fields can be mapped into a corresponding set of first-
order nonlinear differential equations, so that one can obtain the 
general solution of the system [26].

In an apparently disconnected topic, in 1948 Shannon defined 
the entropy of a data string as a measure of how much information 
is needed to characterize it in a transmission: the more informa-
tion is needed for a reliable transmission, the higher the entropy. 
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Inspired by Shannon, Gleiser and Stamatopoulos (GS) recently pro-
posed a measure of complexity of a localized mathematical func-
tion [27]. GS proposed that the Fourier modes of square-integrable, 
bounded mathematical functions can be used to construct a mea-
sure of what they called configurational entropy (CE): a configu-
ration consisting of a single mode has zero CE (a single wave in 
space), while one where all modes contribute with equal weight 
has maximal CE. To apply such ideas to physical models, GS used 
the energy density of a given spatially-localized field configuration, 
found from the solution – exact or approximate – of the related 
PDE. Of importance in what follows, GS pointed out that the con-
figurational entropy can be used to choose the best-fitting trial 
function in situations where their energies are degenerate. More 
generally, the approach presented in [27] has been recently used 
to study the nonequilibrium dynamics of spontaneous symmetry 
breaking [28], to obtain a stability bound for compact astrophysical 
objects [29], and to investigate the emergence of localized objects 
during inflationary preheating [30].

In the present work we will compute the configurational en-
tropy of some classes of models with two interacting scalar fields 
[24–26,31]. These models admit a variety of kink-like solutions, 
and have been shown to give rise to bags, junctions, and networks 
of BPS and non-BPS defects [32]. In particular, we will explore an-
alytical solutions that are energy-degenerate but quite distinct in 
their spatial profiles. We will show that the CE can be used to dis-
tinguish between such configurations, adding a new information-
theoretic perspective to the study of BPS solitons and other non-
linear localized configurations.

Section 2 introduces the model and its analytical solutions. Sec-
tion 3 reviews the configurational entropy measure for spatially 
localized solutions. In Section 4 we compute the configurational 
entropy for two-field BPS solitons and show how it can be used to 
distinguish between energy-degenerate configurations. In Section 5
we present our conclusions and final remarks.

2. Interacting scalar field model and its solutions

Consider a (1 + 1)-dimensional model with two interacting real 
scalar fields described by the following Lagrangian density

L = 1

2
(∂νφ)2 + 1

2
(∂νχ)2 − V (φ,χ), (1)

where V (φ, χ) is the potential. We use units with c = h̄ = 1 and 
metric ηνβ = diag(1, −1) with coordinates xν = (t, x).

The potential V (φ, χ) can be represented in terms of a super-
potential W (φ, χ) as

V (φ,χ) = 1

2

[(
∂W (φ,χ)

∂φ

)2

+
(

∂W (φ,χ)

∂χ

)2]
. (2)

This representation includes supersymmetric models that gen-
erate distinct domain walls and topological solitons [33–35].

From the Lagrangian density (1) and the definition of the super-
potential (2), the classical Euler–Lagrange equations of the static 
field configurations φ = φ(x) and χ = χ(x) are given by

d2φ

dx2
= Wφ Wφφ + Wχ Wχφ, (3)

d2χ

dx2
= Wχ Wχχ + Wφ Wχφ, (4)

where the subscripts denote derivatives with respect to the two 
fields. The energy functional of the static field configurations can 
be calculated as

EBPS = 1

2

∞∫
−∞

dx

[(
dφ

dx

)2

+
(

dχ

dx

)2

+ W 2
φ + W 2

χ

]
, (5)

where Wφ ≡ ∂W (φ,χ)
∂φ

and Wχ ≡ ∂W (φ,χ)
∂χ . The above functional en-

ergy can be easily rewritten in the following form

EBPS = 1

2

∞∫
−∞

dx

[(
dφ

dx
− Wφ

)2

+
(

dχ

dx
− Wχ

)2

+ 2

(
Wφ

dφ

dx
+ Wχ

dχ

dx

)]
. (6)

As a consequence, the solutions with minimal energy of the 
second-order differential equations for the static solutions can be 
found from the following two first-order equations

dφ

dx
= Wφ, and

dχ

dx
= Wχ . (7)

The energy EBPS , which is called BPS energy, is written as

EBPS = ∣∣W (φ j,χ j) − W (φi,χi)
∣∣, (8)

where φi and χi denote the ith vacuum state of the model.
Following Ref. [26], it is possible from (7) to formally write the 

equation

dφ

Wφ

= dx = dχ

Wχ
, (9)

which leads to

dφ

dχ
= Wφ

Wχ
. (10)

The above equation is a nonlinear differential equation relating 
the scalar fields of the model so that φ = φ(χ). Once this function 
is known, Eqs. (7) become uncoupled and can be solved.

Considering the application below, we now review the model 
studied in Refs. [25,26,32], used for modeling a great number of 
systems [32–41], whose superpotential is given by

W (φ,χ) = −λφ + λ

3
φ3 + μφχ2, (11)

where λ and μ are real and positive dimensionless coupling con-
stants. The potential V (φ, χ) of the model with the above super-
potential is given by

V (φ,χ) = 1

2

[
λ2 + λ2φ2(φ2 − 2

)

+ μ2χ2
(
χ2 − 2λ

μ

)
+ 2μ2

(
λ

μ
+ 2

)
φ2χ2

]
. (12)

For λ/μ > 0 the model has four supersymmetric minima (φ, χ)

M1 = (−1,0), M2 = (1,0),

M3 =
(

0,−
√

λ

μ

)
, M4 =

(
0,

√
λ

μ

)
. (13)

The orbits connecting the vacuum states can be seen on Fig. 1. 
Note that we can have six configurations connecting the vacua, 
where five are BPS states and one is non-BPS.

Using the above results, the sectors connecting the vacua and 
their corresponding energies are given by
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