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The most recent observational constraints coming from Planck, when combined with other cosmological
data, provide evidence for a phantom scenario. In this work we consider a quantum cosmic phantom
model where both the matter particles and scalar field are associated with quantum potentials which
make the effective mass associated with the matter particles to vanish at the time of matter-radiation
equality, resulting in a cosmic system where a matter dominance phase followed by an accelerating
expansion is allowed.
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The problem of dark energy still remains unsolved. Its equation
of state (EoS), which is defined as w = p/ρ , where p and ρ are the
pressure and energy density of dark energy, respectively, could be
in the phantom regime (w < −1) [1] according to the most recent
observational constraints [2]. Planck latest results [2] plus WMAP
low-l polarisation (WP), when combined with Supernova Legacy
Survey (SNLS) data, favour the phantom domain at 2σ level for a
constant w

w = −1.13+0.13
−0.14 (95%;Planck + WP + SNLS), (1)

while the Union2.1 compilation of 580 Type Ia supernovae (SNe Ia)
is more consistent with a cosmological constant (w = −1). If we
combine Planck + WP with measurements of H0 [3], we get for a
constant w

w = −1.24+0.18
−0.19 (2)

which is in tension with w = −1 at more than the 2σ level. The
constant w models are of limited physical interest. If w �= −1 then
it is likely to change with time. For a flat universe and for a non-
constant w (w = w0 + wa(1 − a) [4,5]) the combined data from
Planck + WP + H0 leads to

w0 = −1.04+0.72
−0.69 (3)

with a negative wa , away from w = −1 at just under the 2σ level.
Furthermore, with the release of the first results from Planck [2],
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claims for w < −1 at ≥ 2σ have been presented, such as [6],
which features high-quality data and a careful analysis including
systematic errors [7]. Also, the authors in [8] found that for the
SNLS3 and the Pan-STARRS1 survey (PS1 SN) data sets, the com-
bined SNe Ia + Baryon Acoustic Oscillations (BAO) + Planck data
yield a phantom equation of state at ∼ 1.9σ confidence. Therefore,
we find ourselves in a situation in which we can say [8], at 2σ
confidence level, that given Planck data, either the SNLS3 and PS1
data have systematics that have not been accounted for yet, or the
Hubble constant is below 71 km/s/Mpc, or else w < −1.

The above observational results, in addition to theoretical moti-
vations, are compelling enough to justify the study of the phantom
regime in more depth. Given that the standard cosmological model
(�CDM) with w = −1 cannot accommodate this scenario, differ-
ent solutions have been proposed. There are two main approaches.
The first one includes a scalar field with a negative kinetic en-
ergy term [1] but this leads to violent quantum instabilities [9,10].
The second one is more radical and advocates a modification of
general relativity. In this modified gravity scenario there are pre-
scriptions that do not have any ghost degree of freedom, such
as the Brans–Dicke type gravity [11], the scalar-Einstein–Gauss–
Bonnet gravity [12], and the F (R) gravity [13]. These three pro-
posals are also free of perturbative instabilities but one should
also investigate the corrections to the Newton law, perform the
PPN analysis [14] etc., in order to ensure that they are consistent
with the more accurate solar-system and experimental data. Fur-
thermore, it was recently realised by some authors that the most
general second order scalar tensor Lagrangian (and thus, ghost-
free) that still produces second order equations of motion is the
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so-called Horndeski Lagrangian [15–18], a model that includes four
arbitrary functions of the scalar field and its kinetic energy, and of
which Brans–Dicke, Gauss–Bonnet and F (R) are just particular ex-
amples.

Alternatively, a theory which is self-consistent and agrees with
all the above observational data [2] has been proposed [19–21]. It
is most economical as it only uses general relativity and quantum
mechanics without inserting any kind of vacuum fields or intro-
ducing any extra terms in the Hilbert–Einstein gravitational action.
In such a framework one can get essentially two relevant quantum
solutions both of which can be seen as quantum perturbations to
the de Sitter space [20], which is recovered in the classical limit
where h̄ → 0. It has also been shown that out of these two possi-
ble solutions only one of them satisfies the second law of thermo-
dynamics [21], and hence is physically meaningful. It corresponds
to a phantom universe [1] but does not show any quantum insta-
bility [9,10] nor the sort of inconsistency coming from having a
negative kinetic term for the scalar field – in fact, these models do
not actually contain any scalar or other kinds of vacuum fields in
their final equations and do not show neither a future singularity
(Big Rip) [1,22] nor classical violations of the energy conditions. It
is for these reasons that such a cosmic model has also been de-
noted as [20,21] benigner phantom model.

On the other hand, in Ref. [23] (see also [24]) it was shown that
it is impossible to find a sequence of matter and scaling acceler-
ation for any scaling Lagrangian which can be approximated as a
polynomial because a scaling Lagrangian is always singular in the
phase space so that either the matter-dominated era is prevented
or the region with a viable matter is isolated from that where the
scaling acceleration occurs. Such as it happens with other aspects
of the current accelerating cosmology, the problem is to some ex-
tend reminiscent of the difficulty initially confronted by earliest
inflationary accelerating models [25] which could not smoothly
connect with the following Friedmann–Robertson–Walker (FRW)
decelerating evolution [26]. As is well known, such a difficulty was
solved by invoking the new inflationary scenario [27]. In fact, the
problem posed in [23] for dark energy can be formulated by saying
that a previous decelerating matter-dominated era cannot be fol-
lowed by an accelerating universe dominated by dark energy and
it is in this sense that it can be somehow regarded as the time-
reversed version of the early inflationary exit difficulty. Ways out
from this problem required assuming either a sudden emergence
of dark energy domination or a cyclic occurrence of dark energy,
both assumptions being quite hard to explain and implement. The
aim of this work is to show that in the benigner phantom model
[20,21] such problems are no longer present due to the quantum
characteristics that can be assigned to particles and radiation in
this model.

If we apply the real part of the Klein–Gordon wave equation to
a quasi-classical wave function R exp(i S/h̄), where the probability
amplitude R (P = |R|2) and the action S are real functions of the
relativistic coordinates, and define the classical energy E = ∂ S/∂t
and momentum p = ∇ S , we can write the modified Hamilton–
Jacobi equation

E2 − p2 + Ṽ 2
Q = m2

0, (4)

where m0 is the rest mass of the involved particle and Ṽ Q is a
relativistic quantum potential,

Ṽ 2
Q = h̄2

R

(
∇2 R − ∂2 R

∂t2

)
, (5)

which should be interpreted according to Bohm’s idea [30] as
the hidden quantum potential that accounts for precisely de-
fined unobservable relativistic variables whose effects would phys-
ically manifest in terms of the indeterministic behaviour shown

by the given particles. From Eq. (4) it immediately follows that

p =
√

E2 + Ṽ 2
Q − m2

0. Thus, since classically p = ∂ L̃/∂[ ˙q(t)] (with

L̃ being the Lagrangian of the system and q the spatial coordi-
nates, which depends only on time t , q ≡ q(t)), we have for the
Lagrangian

L̃ =
∫

dq̇p =
∫

dv

√
m2

0

1 − v2
+ M2, (6)

in which v = q̇ and M2 = Ṽ 2
Q − m2

0. In the classical limit h̄ → 0,

Ṽ Q → 0, and hence we are just left with the classical relativistic
Lagrangian for a particle with rest mass m0.

We start with an action integral that contains all the ingredi-
ents of our model. Such an action is a generalisation of the one
used in [23] which contains a time-dependent coupling between
dark energy and matter and leads to a general Lagrangian that ad-
mits scaling solutions formally the same as those derived in [23].
Setting the Planck mass to unity, our Lorentzian action reads

S =
∫

d4x
√−g

[
R + p(X, φ)

]
+ Sm

[
ψi, ξ,mi(Ṽ Q ),φ, gμν

] + ST (K ,ψi, ξ), (7)

where g is the determinant of the four-metric, p is a generically
non-canonical general Lagrangian for the dark energy scalar field
φ with kinetic term X = gμν∂μφ∂νφ, formally the same as the
one used in [23], Sm corresponds to the Lagrangian for the matter
fields ψi , each with mass mi , which is going to depend on the
quantum potential Ṽ Q in a way that will be made clear in what
follows, so as on the time-dependent coupling ξ of the matter field
to the dark energy field φ. The term ST denotes the surface term
which generally depends on the trace on the second fundamental
form K , the matter fields ψi and the time-dependent coupling ξ(t)
between ψi and φ for the following reasons.

We first of all point out that in the theory being considered
the coupling between the matter and the scalar fields can gener-
ally be regarded to be equivalent to a coupling between the matter
fields and gravity plus a set of potential energy terms for the mat-
ter fields. In fact, if we restrict ourselves to this kind of theories,
a scalar field φ can always be mathematically expressed in terms
of the scalar curvature R [28]. More precisely, for the scaling ac-
celerating phase we shall consider a quantum dark energy model
(see [30,20,21]) in which the Lagrangian for the field φ vanishes
in the classical limit where the quantum potential is made zero;
i.e. we take p = L = −V (φ)(E(x,k) −

√
1 − φ̇2 ), where V (φ) is the

density of potential energy associated to the field φ and E(x,k)

is the elliptic integral of the second kind, with x = arcsin
√

1 − φ̇2

and k =
√

1 − V 2
Q /V (φ)2, and the overhead dot ˙ means derivative

with respect to time. We do not expect Ṽ Q to remain constant
along the universal expansion but to increase like the volume
of the universe V ∝ a3 does. It is the quantum potential den-
sity V Q = Ṽ Q /V appearing in the Lagrangian L what should be
expected to remain constant at all cosmic times. Using then a po-
tential energy density for φ and the quantum medium [note that
the quantum potential energy density becomes constant [20,21]
(see later on)], we have for the energy density and pressure,
ρ ∝ X(H V Q /Ḣ)2 = p(X)/w(t), with H ∝ φV Q + H0, Ḣ ∝ √

2X V Q ,
where H0 is constant. For the resulting field theory to be finite,
the condition that 2X = 1 (i.e. φ = C1 + t) had to be satisfied [20,
21], and from the Friedmann equation the scale factor ought to be
given by a(t) ∝ exp(C2t + C3t2), with C1, C2 and C3 being con-
stants. It follows then that for at least a flat space–time, we gener-
ally have R ∝ 1 + αφ2 (where α is another constant and we have
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