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In this work we explore the effect of pion cloud contributions to the mass of the nucleon and the �

baryon. To this end we solve a coupled system of Dyson–Schwinger equations for the quark propagator,
a Bethe–Salpeter equation for the pion and a three-body Faddeev equation for the baryons. In the quark–
gluon interaction we explicitly resolve the term responsible for the back-coupling of the pion onto the
quark, representing rainbow-ladder like pion cloud effects in bound states. We study the dependence of
the resulting baryon masses on the current quark mass and discuss the internal structure of the baryons
in terms of a partial wave decomposition. We furthermore determine values for the nucleon and �

sigma-terms.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The application of continuum functional methods to hadron
physics phenomenology aims at the calculation of hadronic prop-
erties using the elementary degrees of freedom of Quantum Chro-
modynamics (QCD). In this framework mesons and baryons are
considered as bound states of quarks and, hence, described by
two-body Bethe–Salpeter equations (BSEs) and three-body Faddeev
equations. These equations rely upon the knowledge of several
QCD’s Green’s functions which are in turn solutions of Dyson–
Schwinger equations (DSEs). The approach has the advantage that
the origin of physical observables can be understood from the mi-
croscopic dynamics of quarks and gluons. Moreover, it is Poincaré
covariant and is applicable at any momentum range.

As is well known, however, it is impossible to carry out this
program exactly and truncations of both the DSEs and the bound
state equations must be defined. The simplest one consistent with
Poincaré covariance as well as constraints from chiral symmetry
is the rainbow-ladder truncation (RL). Approximations of this kind
have been extensively used in hadron calculations (see e.g. [1,2]
for overviews) and turn out to be rather successful in reproducing,
e.g., ground-state masses in selected channels.

There are, however, also severe limitations to the rainbow-
ladder scheme. Consequently, much work has been invested in
the past years on its extension towards more advanced approx-
imations of the quark–gluon interaction. On the one hand, this
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may be accomplished directly by devising improved ansätze for
the dressing functions of the quark–gluon vertex [3–6]. On the
other hand, it is promising to work with diagrammatic approxi-
mations to the vertex DSE. While most studies so far concentrated
on (1/Nc-subleading) Abelian contributions to the vertex (see e.g.
[7–11]), the impact of the 1/Nc-leading, non-Abelian diagram on
light meson masses has been investigated in [12]. In addition, im-
portant unquenching effects in the quark–gluon interaction may
be approximated by the inclusion of hadronic degrees of freedom
[13–15]. This is possible, since the vertex DSE can be decomposed
on a diagrammatic level into terms that are already present in the
quenched theory and those involving explicit quark-loops. The lat-
ter ones can be expressed involving hadronic degrees of freedom.
To leading order in the hadron masses, pion exchange between
quarks is dominating these contributions. These pions are not el-
ementary fields. Consequently, their wave functions need to be
determined from their Bethe–Salpeter equation.

Having explicit hadronic degrees of freedom in the system may
also be very beneficial for phenomenological applications of the
approach. Pion cloud effects are expected to play an important role
in the low momentum behavior of form factors and hadronic decay
processes of baryons [16–23]. Within the covariant BSE-approach,
the influence of pion back-coupling effects in the mass and decay
constants of the pion itself and other light mesons has been stud-
ied in [15]. In the present work, we take this framework one step
further and extend it to the covariant three-body calculations of
nucleon and delta masses [24–26].

This letter is organized as follows: in Section 2 we review the
main elements of the DSE/BSE framework and define the trunca-
tions and model used in this work. We present and discuss the
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Fig. 1. Diagrammatic representation of the three-body Bethe–Salpeter equation.

results of our calculations in Section 3. Finally, some concluding
remarks are made in Section 4.

2. Covariant three-body equation

The mass and internal structure of baryons are given, in a co-
variant Faddeev approach, by the solutions of the three-body equa-
tion (see Fig. 1)

Ψ = −i K̃ (3) G(3)
0 Ψ +

3∑
a=1

−i K̃ (2)
(a) G(3)

0 Ψ, (1)

where K̃ (3) and K̃ (2) are the three- and two-body interaction ker-
nels, respectively, and G0 represents the product of three fully-
dressed quark propagators S . We used here a compact notation
where indices have been omitted and we assume that discrete and
continuous variables are summed or integrated over, respectively.
The spin-momentum part of the full amplitude Ψ depends on the
total and two relative momenta of the three valence quarks inside
the baryon. As discussed in more detail in Section 3.2, this am-
plitude contains all possible spin and orbital angular momentum
contributions.

The quark propagators are obtained from their respective DSE

S−1(p) = S−1
0 (p) − Z1 f

∫
q

Γ ν
gqq,0 Dμν(p − q)Γ ν

gqq(p,q)S(q), (2)

where the integration over the four-momentum q is abbreviated by∫
q ≡ ∫

d4q/(2π)4, S0 is the (renormalized) bare propagator with
its inverse given by

S−1
0 (p) = Z2(i/p + mq), (3)

with bare quark mass mq , whereas

S−1(p) = i/p A
(

p2) + B
(

p2), (4)

denotes the inverse dressed propagator. The renormalization point
invariant running quark mass M(p2) is defined by the ratio of the
scalar quark dressing function B(p2) and the vector dressing func-
tion A(p2): M(p2) = B(p2)/A(p2). Γ ν

gqq is the full quark–gluon
vertex with its bare counterpart Γ ν

gqq,0, Dμν is the full gluon prop-
agator and Z1 f and Z2 are renormalization constants.

To solve the system formed by Eqs. (1) and (2) one needs to
know the interaction kernels and the full quark–gluon vertex. The
latter could in principle be obtained from the infinite system of
coupled DSEs of QCD. In practice, however, this system has to
be truncated into something manageable, which implies that ed-
ucated ansätze have to be used for the Green’s functions one is not
solving for. The interaction kernels, in contrast, do not appear di-
rectly in the system of QCD’s DSEs. In the quark–antiquark channel,
a connection of those with the quark–gluon interaction is estab-
lished via the axial-vector Ward–Takahashi identity, which ensures
the correct implementation of chiral symmetry in the bound state
equations [27,28]. In turn, it is natural from a systematic point of
view to treat the interaction kernels in the quark–quark channels
on a similar approximation level, such that both kernels are fixed
once the approximation of the quark–gluon interaction is specified.
This will be detailed below.

2.1. Rainbow-ladder truncation

The simplest and most commonly used ansatz for the quark–
gluon and quark–quark interactions is the rainbow-ladder (RL)
truncation. Here, only the tree-level flavor, color and Lorentz struc-
tures are kept for the quark–gluon vertex, so that the quark DSE
reads

S−1
αβ(p) = S−1

0,αβ(p) −
∫
q

K̃ RL
αα′β ′β(k)Sα′β ′(q), (5)

with momentum k = p − q and kernel

K̃ RL
αα′β ′β(k) = −4πC Z 2

2
αeff(k2)

k2
Tμν(k)γ

μ
αα′γ ν

β ′β . (6)

Here Z2 denotes the quark renormalization constant, Tμν(k) the
transverse projector

Tμν(k) = δμν − kμkν

k2
, (7)

and C = 4/3 the resulting color factor for quarks in fundamen-
tal representation. The effective coupling αeff combines the non-
perturbative dressing of the gluon propagator and the γμ-structure
of the vertex. At large momenta, it is constrained by perturbation
theory, whereas at low momenta we have to supply a model. In
this work we use the model proposed in [29,30]

αeff
(
q2) = πη7

(
q2

Λ2

)2

e
−η2 q2

Λ2

+ 2πγm(1 − e−q2/Λ2
t )

ln[e2 − 1 + (1 + q2/Λ2
QCD)2] , (8)

where for the anomalous dimension we use γm = 12/(11NC −
2N f ) = 12/25, corresponding to N f = 4 flavors and Nc = 3 col-
ors. We fix the QCD scale to ΛQCD = 0.234 GeV and the scale
Λt = 1 GeV is introduced for technical reasons and has no im-
pact on the results. The interaction strength is characterized by
an energy scale Λ and the dimensionless parameter η controls the
width of the interaction. They have to be fixed by experimental
input, see Section 3.

The quark–antiquark kernel in the pion Bethe–Salpeter equa-
tion (BSE) has to match the interaction model in the quark-DSE
such as to guarantee the Goldstone-boson property of the pion
in the chiral limit. This is encoded in the axial-vector Ward–
Takahashi identity (axWTI). In the rainbow-ladder truncation, the
quark–antiquark kernel in the BSE is then also given by Eq. (6).
The corresponding kernel describing the interaction between two
quarks can be obtained via crossing symmetry. For our rainbow-
ladder scheme this results in the same expression Eq. (6) with
modified color factor C = −2/3. For diquarks, such a kernel to-
gether with its extensions has been explored e.g. in [7], whereas in
the context of the three-body Faddeev equations first results have
been reported in [24–26]. In the latter studies, the three-body irre-
ducible interactions between the three quarks have been neglected.
We adopt the same framework in this work.
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