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A general class of quantum improved stellar models with interiors composed of non-interacting (dust)
particles is obtained and analyzed in a framework compatible with asymptotic safety. First, the effective
exterior, based on the Quantum Einstein Gravity approach to asymptotic safety is presented and, second,
its effective compatible dust interiors are deduced. The resulting stellar models appear to be devoid of
shell-focusing singularities.
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1. Introduction

Some time ago, it was suggested by Steven Weinberg [1] that
a quantum theory of gravitation may dynamically evade the di-
vergences found in perturbative gravity. Specifically, this scenario,
called asymptotic safety, implies the UV completion of gravity based
on a non-Gaussian fixed point of the Renormalization Group flow.
At the present time and thanks to the advent of new functional
renormalization group methods, there is accumulating evidence in
favor of the asymptotic safety scenario (see [2,3] and references
therein); however, there are still some aspects of the approach that
need clarification.

One of these aspects is that, since it seems only natural to de-
mand that a truly fundamental theory of quantum gravity should
be devoid of singularities, asymptotic safety should be able to pro-
vide singularity-free solutions as the result, for example, of a grav-
itational collapse. However, it is still a mystery whether and how
the singularities that appeared in General Relativity (GR) would be
avoided in the asymptotic safety scenario. The difficulty relies on
the complexity of a full approach to the collapse of matter in the
framework of asymptotic safety. In fact, to my knowledge, there
has only been one previous approximation to this problem [4]
which suggests that the deviations from GR offered by the asymp-
totic safety approach could be too small to prevent the generation
of singularities during gravitational collapse.

This Letter aims to contribute to the analysis of the pres-
ence/absence of singularities in the framework of asymptotic
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safety. In particular, an attempt will be made to obtain and analyze
the general class of stellar models consisting of non-interacting
particles which are compatible with asymptotic safety. It is worth
recalling that, in the framework of GR, the class of spherically
symmetric solutions consisting of non-interacting (or dust) par-
ticles are known as the Lemaitre–Tolman–Bondi (LTB) solutions
and have been thoroughly studied (see, for example, [5] and ref-
erences therein). Since there is nothing preventing the collapse in
these classical models, once the particles start collapsing they will
be eventually forced to generate a singularity. From this classical
point of view, the only question is whether this singularity will be
space-like and hidden from any observers (as in the Oppenheimer–
Snyder model [6]) or it will form a naked singularity visible to, at
least, some observers. In fact, it has been shown [7,8] that the class
of the LTB models is wide enough to admit both hidden and (lo-
cally or globally) naked singularities. The final goal of this Letter is
to show that the dust models compatible with asymptotic safety,
unlike their analogous classical LTB models, are singularity-free.

The Letter has been divided as follows. In Section 2 the im-
proved stellar exterior coming from the asymptotic safe approach
is presented. Then, in Section 3 the general class of dust interi-
ors compatible with this exterior and with asymptotic safety is
deduced. These solutions are analyzed in Section 4 in search of
matter or curvature singularities. Finally, the results are discussed
in the concluding Section 5.

2. Exterior: improved Schwarzschild solution

In order to model the gravitational collapse of dust in the Quan-
tum Einstein Gravity approach to asymptotic safety we will assume
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the existence of a spherically symmetric spacetime V in which the
collapse takes place. We will also assume that the spacetime will
be split into two different regions V = V+ ∪ V− with a common
spherically symmetric time-like boundary Σ = ∂V+ ∩ ∂V− , cor-
responding to the surface of the star. With regard to the stellar
exterior region V+ , we will describe it with a portion of an im-
proved Schwarzschild solution. Specifically, we are choosing for the
exterior region an effective improved solution coming from the
asymptotic safety approach that incorporates quantum corrections
to the classical solution ([9] and references therein). A summary of
this effective solution could be the following. The spacetime metric
for this solution can be written as

ds2+ = −
(

1 − 2G(R̄)M

R̄

)
dt2

S +
(

1 − 2G(R̄)M

R̄

)−1

dR̄2

+ R̄2dΩ2. (2.1)

where

G(R̄) = G0 R̄3

R̄3 + ω̃G0(R̄ + γ G0M)
, (2.2)

G0 is Newton’s universal gravitational constant, M is the mass
measured by an observer at infinity and ω̃ and γ are constants
coming from the non-perturbative renormalization group theory
and from an appropriate cutoff identification, respectively. The
qualitative properties of this solution are fairly insensitive to the
precise value of γ . However, in [9,10] it is argued that the pre-
ferred value for γ is γ = 9/2. On the other hand, ω̃ can be found
by comparison with the standard perturbative quantization of Ein-
stein’s gravity (see [11] and references therein). It can be deduced
that its precise value is ω̃ = 167/30π , but again the properties of
the solution do not rely on its precise value as long as it is strictly
positive.

If we define

χ ≡ 1 − 2G(R̄)M

R̄
,

the horizons of the improved solution can be found by solving
χ = 0. It is easy to see that the horizons correspond to the num-
ber of positive real solutions of a cubic equation and depend on
the sign of its discriminant or, equivalently, on whether the mass
is bigger, equal or smaller than a critical value

Mcr = 1

24

√
1

2
(2819 + 85

√
1105 )

√
ω̃

G0
� 2.21

√
ω̃mp � 2.94mp,

where mp is Planck’s mass. If M > Mcr then the equation χ = 0
has two positive real solutions {R̄ I , R̄ O } satisfying R̄ I < R̄ O . The
existence of an inner solution R̄ I represents a novelty with re-
gard to the classical spacetime. However, it is interesting to re-
mark that it is a result common to different approaches to Quan-
tum Gravity. (See, for example, [12–14].) The outer solution R̄ O

can be considered as the improved Schwarzschild horizon, i.e., the
Schwarzschild horizon with quantum corrections taken into ac-
count. The ‘improvement’ in this horizon is, however, negligible
for stellar masses, as can be made apparent if one expands R̄ O in
terms of mp/M obtaining

R̄ O � 2G0M

[
1 − (2 + γ )

8
ω̃

(
mp

M

)2]
.

In order to interpret the physical meaning of this solution let
us suppose that it has been generated by an effective matter
fluid in such a way that the coupled gravity-matter system sat-
isfies Einstein’s equations Gμν = 8πG0Tμν [9,15]. Consider now

a radially moving observer with an arbitrary 4-velocity ū and
an orthonormal basis {ū, n̄,ωθ ,ωϕ} such that ωθ ≡ R̄−1 ∂/∂θ ,
ωϕ ≡ (R̄ sin θ)−1 ∂/∂ϕ and n̄ is a space-like 4-vector. The radially
moving observer will write the vacuum energy–momentum tensor
as an anisotropic fluid

T+ = �V ū ⊗ ū + pV n̄ ⊗ n̄ + p⊥(ωθ ⊗ ωθ + ωϕ ⊗ ωϕ), (2.3)

where �V is the vacuum energy density, pV is the vacuum normal
pressure and p⊥ is the vacuum tangential pressure. By using the
field equations, one can obtain their explicit expressions:

�V = MG,R̄

4πG0 R̄2
= −pV ,

p⊥ = − MG,R̄ R̄

8πG0 R̄
, (2.4)

where G,R̄ and G,R̄ R̄ are, respectively, the first and second deriva-
tives of G with respect to R̄ .

3. Improved dust interiors

In order to obtain the complete stellar model, we are now
searching for the general class of quantum improved interiors V−
made of non-interacting particles which are matchable with the
improved exterior solution. In other words, V+and V− should sat-
isfy Darmois matching conditions on Σ , what implies that the
interiors must be such that the first and second fundamental forms
of Σ must coincide when computed from V+ or V− [16,17].

Locally, every spherically symmetric spacetime metric can be
written in geodesic coordinates as

ds2− = −dτ 2 + f (τ , r)dr2 + R(τ , r)2dΩ2, (3.1)

where, if the spacetime is filled with a fluid, τ is the proper time
of the particles composing the fluid and r is a parameter that la-
bels every shell of the fluid.

The matching of the interior solution to the improved Schwarz-
schild exterior will be performed through a spherically symmetric
time-like hypersurface Σ comoving with the fluid. I.e., the stellar
surface will be defined by choosing a matching shell r = rΣ . Since
we do not have energy entering or leaving the star, the total mass
M of the star in the matched model should be completely deter-
mined by the value chosen for rΣ , i.e., M = M(rΣ).

Darmois matching conditions and, in particular, the require-
ment that the first fundamental forms of Σ must coincide implies
that the areal radii for the interior (R) and exterior regions (R̄)
must agree on Σ [17]:

R(τ , r)
Σ= R̄. (3.2)

On the other hand, another consequence of the matching condi-
tions is that the mass functions [18–20] at both sides of the match-
ing hypersurface Σ must coincide [17]. The mass function of the
interior solution is defined by M− ≡ R(1 − gαβ

− ∂α R∂β R)/(2G0),
what allows us to write f (for later use) as

f = R ′2

Ṙ2 + 1 − 2G0M−/R
, (3.3)

where the apostrophe in R ′ denotes derivative with respect to
r and the overdot in Ṙ denotes derivative with respect to τ .
For the exterior, the mass function takes the form M+ ≡ R̄(1 −
gαβ
+ ∂α R̄∂β R̄)/(2G0) = M(rΣ)G(R̄)/G0, so that we will have on the

matching surface

M−(τ , rΣ)
Σ= M(rΣ)G(R̄)/G0. (3.4)
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