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We numerically compute the Rényi entropy for four-dimensional free scalar field theory with a spherical
entangling surface. As is well known, the Rényi entropy as a function of the boundary area exhibits linear
dependence in the leading order. The coefficient of the subleading logarithmic term from our numerical
data, as a function of the Rényi order q, agrees nicely with the general prediction of conformal field
theory computation. The motivation of this work is also partly to see how the efficiency of numerical
computation changes as a function of q. For q < 1 the summation over eigenvalues of reduced density
matrix takes longer since the series converges more slowly than for q = 1. For q > 1 the convergence is
faster, but the relative error becomes large as a general trend.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

In this paper we largely follow the prescription of Srednicki [1]
and apply it to compute the Rényi entropy numerically for a scalar
field in four dimensions. For simplicity, like in [1] we will choose
a spherical surface of radius R as the entangling surface.

The definition of entanglement entropy involves dividing the
space into two disjoint subsets. For a given density matrix of the
entire system, we first eliminate the quantum degrees of freedom
in one subset by taking the trace over it.

ρA = TrB ρtotal. (1)

After this manipulation, ρA becomes a mixed state even if we start
with pure state ρtotal. Then the entanglement entropy between re-
gions A and B is defined as the von Neuman entropy of ρA ,

S E E = −TrA ρA logρA . (2)

One can in fact easily show that [1] if ρtotal is pure, then S E E =
−TrB ρB logρB is also true. This symmetry implies that if this
quantity is well-defined then it should depend only on the bound-
ary between A and B . This area law was explicitly confirmed
through numerical computation in [1].

A refinement of entanglement entropy, as a one-parameter de-
formation, is given by the Rényi entropy.

S R E(q) = log TrA ρ
q
A

1 − q
. (3)
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It immediately follows that

lim
q→1

S(q)R E = S E E . (4)

Obviously the computation of the Rényi entropy will constitute a
more robust check for a conjectured equality, for instance when
one is to compare the result against calculation done in a very
different setting, like the proposal of Ryu–Takayanagi formula (see
e.g. [2] for a review) for holographic computation of entanglement
entropy via AdS/CFT correspondence [3].

Although the computation of entanglement or the Rényi en-
tropy may become very hard in general, for special cases it is
possible to obtain an analytic answer. In this paper we choose to
study free scalar field theory, and choose the sphere of radius R as
the entangling surface between region A and B . The Rényi entropy
for this particular example is given as follows [4–7],

S E E = α

(
R

ε

)2

− (1 + q)(1 + q2)

360q3
log(R/ε), (5)

where ε is UV cutoff, and the coefficient of area law α is
scheme-dependent and non-universal as it is usually the case with
quadratic divergences in quantum field theory. The q-dependent
function as the coefficient of log term is a physical result, which
in more generality is given by Weyl anomaly coefficient [8].

We will numerically check the validity of the above formula
for Rényi entropy, for a free scalar field theory. The motivation for
this exercise is to attain experience and insight into the numerical
computation of Rényi entropy, as a preparation of more challeng-
ing problems such as gauge field theory or interacting field theory.
First of all as a general remark one expects the introduction of
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q should expediate the numerical computation since it replaces
logarithm inside Tr of Eq. (2) with a power function. It will also
help, as we increase q, that the summands in (3) will become
smaller so we will have faster convergence and eventually smaller
values of S E E . We have confirmed these predictions and also ob-
tained the numerical values. For q < 1 the numerical calculation
in average takes two to three times longer to finish than q > 1
cases.

We note that there exist several papers which include numeri-
cal evaluation of entanglement and Rényi entropy. The logarithmic
coefficient in entanglement entropy was first computed in [9]. Ex-
tension to different spacetime dimensions was studied in [10,11],
and [12]. The case of entangling surface with cylindrical topol-
ogy are studied in [13], and more recently in [14] for Rényi en-
tropy.

2. Rényi entropy of a free scalar field on sphere

The discretization prescription of a free scalar field for spheri-
cal entangling surface was first worked out by Srednicki [1], and
refined in subsequent works [9,10]. This section is largely a review
of these earlier works and serves to setup the notation.

Our starting point is the Hamiltonian for a real, massless free
scalar field in four dimensions.

H = 1

2

∫
d3x

(
π2(�x) + (∇φ(�x))2)

. (6)

We can expand using spherical harmonics and in terms of partial-
wave Hamiltonians we have (x ≡ |�x|).

Hlm = 1

2

∫
dx

{
π2

lm(x) + x2
[

∂

∂x

(
φlm(x)

x

)]2

+ l(l + 1)

x2
φ2

lm(x)

}
.

(7)

We may now put this Hamiltonian on lattice (discretize coordi-
nate x) with size a and obtain a system of coupled harmonic
oscillators (for each l,m)

Hlm = 1

2a

N∑
i, j=1

(
δi jπ

2
j + φi Ki jφ j

)
, (8)

where φ j ≡ φ(x = ja), etc. The mass matrix K can be computed
easily and the result is

K11 = 9

4
+ l(l + 1), (9)

K jj = 2 + 1

j2

(
1

2
+ l(l + 1)

)
, 2 ≤ j ≤ N, (10)

K j, j+1 = K j+1, j = − ( j + 1/2)2

j( j + 1)
, 1 ≤ j ≤ N − 1. (11)

Here N is the size of total space we introduce as an IR cut-
off. The radius of the sphere in this prescription can be taken as
R = (n + 1/2)a.

For a coupled harmonics oscillators system it is straightforward
to obtain the ground state density matrix, and tracing out the in-
side degrees of freedom when we divide the set of degrees of
freedom into two. The computational prescription is as follows.
The matrix K above is real and symmetric, and the eigenvalues are
positive. One may thus find the “square root” of K , i.e. Ω = √

K .
We then express it as

Ω =
(

A B

BT C

)
, (12)

where A is n × n and C is (N − n) × (N − n). From Ω we compute
the following (N − n) × (N − n) matrices step by step.

β = 1

2
BT A−1 B, β ′ = 1√

C − β
β

1√
C − β

. (13)

Let us denote the eigenvalues of β ′ by β ′
i ( i = 1,2, . . . , N − n).

Then all the eigenvalues of the reduced density matrix ρout are
found to be

pi,k = (1 − ξi)ξ
k
i , i = 1,2, . . . , (N − n), k = 0,1,2, . . . (14)

ξi = β ′
i

1 +
√

1 − β ′ 2
i

. (15)

Now if we denote the eigenvalues of the reduced density matrix
ρout by pi (probability), they are given as

pi = (1 − ξi)ξ
n
i , ξi = β ′

i

1 +
√

1 − β ′ 2
i

. (16)

If we substitute these eigenvalues into the definition of Rényi en-
tropy Eq. (3), the Rényi entropy for each partial wave field φlm is
given as

S E E(l) =
N−n∑
i=1

q(1 − ξi) − log(1 − ξ
q
i )

1 − q
. (17)

Finally the entire Rényi entropy is

S E E =
∞∑

l=0

(2l + 1)S E E(l). (18)

3. Implementation and the results

For each step of the evaluation we are given specific values of
n,q, N, l. Using the matrix K and Eq. (17), one obtains a number
S(n,q, N, l). In reality what we need to calculate eventually is then

S R E(n,q) ≡
∞∑

l=0

(2l + 1) lim
N→∞ S(n,q, N, l). (19)

One practical issue which was not mentioned in [9] is that
some of the eigenvalues β ′

i are negative. This boundary effect leads
to small but non-vanishing imaginary part in the computation of
entanglement entropy since it involves computing of logβ ′

i . One
can introduce a small cutoff and ignore the eigenvalues whose
absolute value is smaller than the cutoff, making entanglement en-
tropy real. For the Rényi entropy we are interested here there will
not be imaginary part, but we will still use small cutoff but the
cutoff 10−9/(2l + 1) which will accelerate the computation.

Taking large N limit can be done by fitting the large N behavior
of S(n,q, N, l) to asymptotic behavior S(n,q, N, l) ∼ al + bl/N2l+2.
This behavior was empirically discovered in [9], which we also
confirmed in our results. Although this scaling does not precisely
hold for large l, the function even more quickly converges to the
limiting value S(n,q,∞, l) for large l and the error can be ignored.

We should also approximate the sum over l. For this purpose
we first compute and do summation of (2l + 1)S(n,q,∞, l) up to
the point l = lc where it becomes smaller than a pre-set value,
which we chose to be 10−4. From there we evaluate S for ten
different values of l, equally spaced from lc to 2lc . Then these data
points are fit against simple power dependence A/lB and then the
rest of the summation can be approximated using Euler–McLaurin
formula.
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