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We study the semilocal version of Popov’s vortex equations on S2. Though they are not integrable, we
construct two families of exact solutions which are expressed in terms of rational functions on S2. One
family is a trivial embedding of Liouville-type solutions of the Popov equations obtained by Manton,
where the vortex number is an even integer. The other family of solutions is constructed through a field
redefinition which relates the semilocal Popov equation to the original Popov equation but with the ratio
of radii

√
3/2, which is not integrable. These solutions have vortex number N = 3n − 2 where n is a

positive integer, and hence N = 1 solutions belong to this family. In particular, we show that the N = 1
solution with reflection symmetry is the well-known C P 1 lump configuration with unit size where the
scalars lie on S3 with radius

√
3/2. It generates the uniform magnetic field of a Dirac monopole with

unit magnetic charge on S2.
© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

Recently, Popov [1] obtained a set of vortex-type equations on
a 2-sphere by dimensional reduction of SU(1,1) Yang–Mills in-
stanton equations on the four-manifold S2 × H2 where H2 is a
hyperbolic plane. It was shown that they are integrable when the
scalar curvature of the manifold vanishes. Subsequently, Manton
[2] constructed explicit solutions with even vortex numbers from
rational functions on the sphere. They have a geometric interpre-
tation in terms of conformal rescalings of the 2-sphere metric.

The Popov equations involve a complex scalar field and a U(1)
gauge potential. Except a flipped sign, they are the same as the
well-known Bogomolny equations [3] for abelian Higgs vortices
[4,5] on S2. In this paper, we would like to consider the semilocal
[6,7] version of the Popov equations, which consist of two scalar
fields instead of one. The equations have an additional global SU(2)
symmetry with respect to the rotation of the scalars as well as the
local U(1) symmetry. We will show that they appear in 2 + 1 di-
mensional Chern–Simons systems with nonrelativistic matter on
S2. Such systems on the plane have been extensively studied to
understand the quantum Hall effect and other related phenomena
[8–10]. Then we construct two families of exact solutions of the
semilocal Popov equations. One family of solutions is trivially ob-
tained by a simple ansatz that the two scalars are proportional
to each other, with which the equations reduce to the original
Popov equations. For the other family of solutions, we will relate
the equations to the semilocal version of the Liouville equations
considered in [11,12]. In addition to Liouville solutions, they admit
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another family of exact solutions [12] which involves an arbitrary
rational function on S2. We will construct solutions of the semilo-
cal Popov equations from them.

It turns out that semilocal Popov equations have another con-
nection to the original Popov equations with a single scalar. As
mentioned above, it is integrable only when the scalar curvature of
the underlying four-manifold S2 × H2 vanishes [1], which happens
for equal radii R1 = R2, where R1, R2 are the radii of S2 and H2,
respectively. Here we will show that the semilocal Popov equations
with equal radii can be transformed to the Popov equations with
different radii R1/R2 = √

3/2. The aformentioned solutions of the
semilocal equation correspond to the constant solution of the lat-
ter.

The Liouville solutions have only even vortex numbers [2].
However the vortex number of the other family of solutions is
N = 3n − 2, where n is a positive integer, so that odd vortex num-
bers are possible. In particular, the solutions with unit vorticity
N = 1 belong to this family. We will show that the N = 1 solution
with reflection symmetry in the equator of S2 is precisely given
by the C P 1 lump configuration with unit size. The S3 where the
scalar fields lie has radius

√
3/2 which is the ratio R1/R2 above.

The magnetic field is that of a Dirac monopole with unit magnetic
charge on S2.

Let us begin with writing the Popov equations on S2. For con-
venience, the radius of S2 is fixed to be

√
2. The metric of S2 is

given by ds2 = Ωdzdz̄ with

Ω = 8

(1 + |z|2)2
. (1)
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The Popov equations are1

Dz̄φ ≡ ∂z̄φ − iaz̄φ = 0, (2)

F zz̄ = − 2i

(1 + |z|2)2

(
C2 − |φ|2), (3)

where C = R1/R2 = √
2/R2 is the ratio of radii as described above.

φ is a complex scalar field, a is a U(1) gauge potential and F zz̄ =
∂zaz̄ − ∂z̄az is the field strength which is imaginary. If the right
hand side of the second equation has opposite sign, these would
be the same as the Bogomolny equations for abelian Higgs vortices
on S2. As mentioned above, the equations are integrable only for
C = 1 [1]. From (2) the gauge potential az̄ may be expressed as

az̄ = −i∂z̄ lnφ, (4)

away from zeros of φ. Since

F zz̄ = −i∂z∂z̄ ln |φ|2, (5)

we can eliminate the gauge potential and are left with a single
equation

∂z∂z̄ ln |φ|2 = 2

(1 + |z|2)2

(
C2 − |φ|2), (6)

which is valid away from zeros of φ.
Eqs. (2) and (3) may be obtained from an energy function [1,2]

which comes from a dimensional reduction of the Yang–Mills ac-
tion,

E = 1

2

∫
S2

[
4

Ω
|F zz̄|2 − 2

(|Dzφ|2 + |Dz̄φ|2)

+ Ω

4

(
C2 − |φ|2)2

]
i

2
dz ∧ dz̄

= 1

2

∫
S2

{
− 4

Ω

[
F zz̄ + i

Ω

4

(
C2 − |φ|2)]2

− 4|Dz̄φ|2
}

i

2
dz ∧ dz̄ − πC2N, (7)

where N is the first Chern number

N = 1

2π

∫
S2

F zz̄dz ∧ dz̄, (8)

which is an integer and is the same as the vortex number which
counts the number of isolated zeros of φ. Therefore, for fields sat-
isfying the Popov equations, the energy is stationary and has value
−πC2 N . It is however not minimal because of the negative sign in
the second term of (7).

The Popov equation (6) can also arise in a completely different
physics system. Let us consider a 2 + 1 dimensional Chern–Simons
gauge theory with a nonrelativistic matter field on S2 of which the
action is

S =
∫

dt

∫
S2

[
κ

2
εμνλaμ∂νaλ + Ω

(
iφ∗Dtφ − V

)

− (|D̃zφ|2 + |D̃ z̄φ|2)] i

2
dz ∧ dz̄, (9)

where κ is the Chern–Simons coefficient and

1 We follow the notation of [2].

Dtφ = (∂t − iat)φ

D̃zφ = (
∂z − iaz − i Aex

z

)
φ. (10)

Note that we applied an external U(1) gauge potential Aex given
by

Aex
z̄ = i

2

gz

1 + |z|2 , (11)

which generates uniform magnetic field with magnetic charge g
on S2. The potential V has the form

V = − g

8
|φ|2 + 1

2κ
|φ|4. (12)

This action has been extensively studied on the plane in the con-
text of anyon physics to understand the quantum Hall effect and
other related phenomena [9,10].

Variation of at gives the Gauss constraint

F zz̄ = −i
Ω

2κ
|φ|2. (13)

The energy function is

E =
∫
S2

(|D̃zφ|2 + |D̃ z̄φ|2 + ΩV
) i

2
dz ∧ dz̄, (14)

which has no explicit contribution from the Chern–Simons term. It
can be rewritten by the usual Bogomolny rearrangement

|D̃zφ|2 = |D̃ z̄φ|2 − i
(

F zz̄ + F ex
zz̄

)|φ|2

= |D̃ z̄φ|2 − Ω

2κ
|φ|4 + g

8
Ω|φ|2, (15)

up to a total derivative term, where in the second line we have
used (13) and F ex

zz̄ = ig
8 Ω . The last two terms in (15) are cancelled

by the potential (12) and the energy becomes

E = 2
∫
S2

|D̃ z̄φ|2 i

2
dz ∧ dz̄, (16)

which is positive definite. Therefore the energy vanishes if

D̃ z̄φ = 0. (17)

Combining this equation with the Gauss constraint (13), we get

∂z∂z̄ ln |φ|2 = − Ω

2κ

(
κ g

4
− |φ|2

)
, (18)

away from zeros of φ. With κ = −2 and g = −2C2 this becomes
the Popov equation (6).

Now we introduce the semilocal Popov equations which involve
two scalar fields φi (i = 1,2). We will only consider the case of
equal radii, i.e., C = 1. The semilocal Popov equations read

Dz̄φi ≡ ∂z̄φi − iaz̄φi = 0, (i = 1,2) (19)

F zz̄ = − 2i

(1 + |z|2)2

(
1 − |φ1|2 − |φ2|2

)
, (20)

which have an obvious global SU(2) symmetry. These equations
can again be obtained from the energy function generalizing (7)
by introducing two scalars

E = 1

2

∫
S2

{
(1 + |z|2)2

2
|F zz̄|2 − 2

2∑
i=1

(|Dzφi|2 + |Dz̄φi|2
)

+ 2

(1 + |z|2)2

(
1 − |φ1|2 − |φ2|2

)2

}
i

2
dz ∧ dz̄. (21)
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