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Abstract

We compute the third-order correction to the S-wave quarkonium wave functions |ψn(0)|2 at the origin from non-Coulomb potentials in
the effective non-relativistic Lagrangian. Together with previous results on the Coulomb correction and the ultrasoft correction computed in a
companion paper, this completes the third-order calculation up to a few unknown matching coefficients. Numerical estimates of the new correction
for bottomonium and toponium are given.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The non-relativistic bound-state problem has a long history since the birth of quantum mechanics. Its systematic derivation
from the relativistic quantum field theory of electrodynamics or chromodynamics (QCD) was developed more recently. Non-
relativistic effective field theories [1–3] together with dimensional regularization and diagrammatic expansion methods [4] now
allow calculations of higher-order perturbative corrections, including all “relativistic” effects, to the leading-order bound-state
properties, given by the solution of the Schrödinger equation. This is of interest in QCD for the lowest bottomonium state and top–
antitop production near threshold, where non-perturbative long-distance effects can be argued to be sub-dominant, but perturbative
corrections are large.

The S-wave energy levels are currently known at next-to-next-to-next-to-leading order (NNNLO)1 [5–8], except for the three-
loop coefficient of the colour-Coulomb potential, but the corresponding wave functions at the origin, which are related to elec-
tromagnetic decay and production of these states are completely known only at next-to-next-to-leading order (NNLO) [9–11].
There exist partial results for logarithmic effects at NNNLO [12–15], which can be related to certain anomalous dimensions and
lower-order quantities. In [7] we computed the third-order corrections to S-wave wave function at the origin from all terms in the
heavy-quark potential related only to the Coulomb potential. In this Letter we compute the contribution from the remaining poten-
tials. A companion paper [16] deals with the Lamb-shift like contribution from ultrasoft gluons, thus completing the calculation of
all bound-state effects at NNNLO, except for a few unknown matching coefficients. Our result is provided in such a form that these
coefficients can be easily inserted, once they are computed.

In contrast to the Coulomb corrections the calculation of the more singular non-Coulomb potential corrections leads to diver-
gences, both in the calculation of the potentials themselves as in the insertions of these potentials in the calculation of the wave
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1 Non-relativistic perturbation theory is an expansion in αs and the non-relativistic velocity v, while counting αs/v ∼ 1, which implies a summation of the series
in αs even at LO. We do not sum logarithms of αs lnv.
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function at the origin. We employ dimensional regularization with d = 4 − 2ε throughout, and provide a precise definition of all
quantities, which corresponds to the MS subtraction scheme. The technical details of this calculation together with an extension to
the full S-wave Green function will be given elsewhere.

2. Relating the leptonic quarkonium decay constant to the wave function at the origin

We consider the two-point function

(1)
(
qμqν − gμνq2)Π(

q2) = i

∫
ddx eiqx〈Ω|T (

jμ(x)jν(0)
)|Ω〉,

of the electromagnetic heavy-quark current jμ = Q̄γ μQ, choosing qμ = (2m + E,0) with m the pole mass of the heavy quark.
The two-point function exhibits the S-wave bound-state poles at En, near which

(2)Π
(
q2) E→En= Nc

2m2

Zn

En − E − iε
.

Here Nc = 3 denotes the number of colours. The residue Zn is related to the leptonic decay width Γ ([QQ̄]n → l+l−) of the nth
S-wave quarkonium state by

(3)Γ
([QQ̄]n → l+l−

) = 4πNce
2
Qα2Zn

3m2
,

with eQ the electric charge of the heavy quark in units of the positron charge, and α the fine-structure constant. Although there are
no toponium states, and the cross section of top–antitop production is determined by the full two-point function, the residue Zn for
n = 1 provides an approximation to the height of the broad resonance in this cross section.

The electromagnetic current jμ is expressed in terms of the non-relativistic heavy quark (ψ ) and antiquark (χ ) field operators
via

(4)j i = cvψ
†σ iχ + dv

6m2
ψ†σ iD2χ + · · · ,

where the hard matching coefficients have expansions cv = 1 + ∑
n c

(n)
v (αs/4π)n, and the dv = 1 + d

(1)
v (αs/4π) + · · · . The central

quantity in this Letter is the two-point function

(5)G(E) = i

2Nc(d − 1)

∫
ddx eiEx0〈Ω|T ([

ψ†σ iχ
]
(x)

[
χ†σ iψ

]
(0)

)|Ω〉 E→En= |ψn(0)|2
En − E − iε

,

defined in non-relativistic QCD (NRQCD), whose poles define the wave functions at the origin and bound-state energy lev-
els. At leading order, the wave functions and binding energies are given by |ψ(0)

n (0)|2 = (mCF αs)
3/(8πn3) and E

(0)
n =

−m(αsCF )2/(4n2), respectively (here and below CF = (N2
c − 1)/(2Nc) = 4/3, CA = Nc = 3). They receive perturbative cor-

rections from higher-order heavy-quark potentials and dynamical gluon effects, hence En = E
(0)
n (1 + ∑

k(αs/4π)kek) and

|ψn(0)|2 = |ψ(0)
n (0)|2(1 + ∑

k(αs/4π)kfk). Using an equation-of-motion relation, we can replace D2 in (4) by −mE, and we
obtain

(6)Zn = cv

[
cv − En

m

(
1 + dv

3

)
+ · · ·

]∣∣ψn(0)
∣∣2

,

where terms beyond NNNLO are neglected. Inserting the perturbative expansions and defining Zn = |ψ(0)
n (0)|2(1+∑

k(αs/4π)kzk),
results in

(7)z1 = 2c(1)
v + f1,

(8)z2 = 2c(2)
v + c(1)

v

2 + 2c(1)
v f1 + f2 − 4

3

16π2E
(0)
n

mα2
s

,

(9)z3 = 2c(3)
v + 2c(1)

v

(
c(2)
v + f2

) + (
2c(2)

v + c(1)
v

2)
f1 + f3 − 16π2E

(0)
n

mα2
s

[
d

(1)
v

3
+ 4

3

(
c(1)
v + e1 + f1

)]
.

Note that ek , fk and zk depend on the principal quantum number n of the energy level, but we omitted a corresponding index to keep
the notation short. The short-distance coefficients c

(1)
v , c

(2)
v in the MS scheme2 are given in [17,18]. The third-order coefficient c

(3)
v

2 The MS scheme is defined by the loop integration measure μ̃2εddk/(2π)d with μ̃2 = μ2eγE /(4π) and subtraction of the pole parts in ε.
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