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We study four-dimensional κ-Minkowski spacetime constructed by the twist deformation of U (igl(4, R)).
We demonstrate that the differential structure of such twist-deformed κ-Minkowski spacetime is closed
in four dimensions contrary to the construction of κ-Poincaré bicovariant calculus which needs an extra
fifth dimension. Our construction holds in arbitrary dimensional spacetimes.
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1. Introduction

There has been much interest in recent years in a possible role
of deformation of spacetime symmetry in describing Planck scale
physics. In particular, initiated by the κ-deformed Poincaré algebra
[1] the κ-Minkowski spacetime [2,3] satisfying

[
x0, xi] = i

κ
xi,

[
xi, x j] = 0, (1)

has attracted much attention in explaining cosmic observational
data, since the deformation preserves the rotational symmetry in
space. The differential structure of the κ-Minkowski spacetime has
been constructed in [4] and based on this differential structure,
the scalar field theory has been formulated [5–8]. Similar field
theoretic approach is given in [9,10] using the coproduct and star
product as Lie-algebraic noncommutative spacetime. It was shown
that the differential structure requires that the momentum space
corresponding to the κ-Minkowski spacetime becomes a de Sitter
section in five-dimensional flat space. The κ-deformation was ex-
tended to the curved space with κ-Robertson–Walker metric and
was applied to the cosmic microwave background radiation in [11].
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The physical effects of the κ-deformation has been investigated on
the Unruh effect [7], black-body radiation [12] and Casimir effect
[13]. The Fock space and its symmetries [14,15], κ-deformed statis-
tics of particles [16,17], and interpretation of the κ-Minkowski
spacetime in terms of exotic oscillator [18] were also studied.

Recently, simpler realization of the κ-Minkowski spacetime by
the use of twisting procedure have been sought by several authors
[19–23]. It happens that only the case of the light-cone κ-deforma-
tion the deformed Poincaré algebra can be described by standard
twist (see e.g. [19]).

By embedding an Abelian twist in IGL(4, R) whose symmetry is
larger than the Poincaré, the realization for the time-like κ-defor-
mation was first constructed in Ref. [20] and then by [21]. Some
physical properties of analogous twist realization of κ-Minkowski
spacetime were discussed recently [22]. This approach can be seen
as an alternative to the κ-like deformation of the quantum Weyl
and conformal algebra [23], which is obtained by using the Jorda-
nian twist [24]. One may even consider the chains of twists for
classical Lie algebras [25].

In this Letter, we will construct the κ-Minkowski spacetime
and its differential structure using the twisted universal enveloping
Hopf algebra of the inhomogeneous general linear group in (3+1)-
dimensions. In Section 2, the κ-Minkowski spacetime from twist is
reviewed and in Section 3, its differential structure is constructed.
We show that the differential structure is closed without extra di-
mension.
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2. Review on the κ-Minkowski spacetime from twist

Twisting the Hopf algebra of the universal enveloping algebra
of igl(4, R) is considered in [20,21]. The group of inhomogeneous
linear coordinate transformations is composed of the product of
the general linear transformations and the spacetime translations.
The inhomogeneous general linear algebra in (3 + 1)-dimensional
flat spacetime g = igl(4, R) is composed of 20 generators {Pa, Ma

b}
(a,b = 0,1,2,3) where Pa represents the spacetime translation
and Ma

b homogeneous one including the boost generator, rotation
and dilation. The generators satisfy the commutation relations,

[Pa, Pb] = 0,
[
Ma

b, Pc
] = iδa

c · Pb,[
Ma

b, Mc
d
] = i

(
δa

d · Mc
b − δc

b · Ma
d
)
. (2)

The universal enveloping Hopf algebra U (g) can be constructed
starting from the base elements {1, Pa, Ma

b} and coproduct �Y =
1 ⊗ Y + Y ⊗ 1 with Y ∈ {Pa, Ma

b}. The operators representing en-
ergy E and spatial dilatation D is defined by

E = P0, D =
3∑

i=1

Mi
i . (3)

Note that the two generators D and E commutes with each other,
[D, E] = 0. In Ref. [20], an Abelian twist element Fκ ,

Fκ = exp

[
i

κ

(
αE ⊗ D − (1 − α)D ⊗ E

)]
, (4)

is shown to generate the κ-Minkowski spacetime with the twisted
Hopf algebra Uκ (g). α is a constant chosen as α = 1/2 in this
Letter which corresponds to the symmetric ordering of the expo-
nential kernel function in the conventional κ-Minkowski spacetime
formulation. Other choice of α represents a different ordering.

Co-unit and antipode are not twisted εF = ε and S F = S , but
coproduct is twisted as

�κ(Y ) = Fκ · �Y · F −1
κ =

∑
i

Y(1)i ⊗ Y(2)i ≡ Y(1) ⊗ Y(2). (5)

Explicitly (i, j = 1,2,3),

�κ(Z) = Z ⊗ 1 + 1 ⊗ Z , Z ∈ {
E, D, Mi

j
}
,

�κ(Pi) = Pi ⊗ eE/(2κ) + e−E/(2κ) ⊗ Pi,

�κ

(
Mi

0
) = Mi

0 ⊗ e−E/(2κ) + eE/(2κ) ⊗ Mi
0,

�κ

(
M0

i
) = M0

i ⊗ eE/(2κ) + e−E/(2κ) ⊗ M0
i

+ 1

2κ

(
Pi ⊗ DeE/(2κ) − e−E/(2κ)D ⊗ Pi

)
,

�κ

(
M0

0
) = M0

0 ⊗ 1 + 1 ⊗ M0
0 + 1

2κ
(E ⊗ D − D ⊗ E). (6)

It is noted that the twisted Hopf algebra is different from that of
the conventional κ-Poincaré algebra in two aspects. First, the alge-
braic part is nothing but those of the un-deformed inhomogeneous
general linear group (2) rather than that of the deformed Poincaré.
Second, the co-algebra structure is enlarged due to the bigger sym-
metry igl(4) and its co-product is deformed as (6).

3. Differential structure

The inhomogeneous general linear group IGL(4, R) acts on the
coordinate space {xa} and the twisted-coproduct of the generator
Y acts on the tensor product space of {xa ⊗ xb}. Thus, one can
define the ∗-product of the coordinate vectors xa in terms of the
twist action on the coordinates. Explicitly,

xa ∗ xb ≡ ∗[
xa ⊗ xb] = ·[F −1

κ � (
xa ⊗ xb)]. (7)

This results in the noncommutative commutation relation of the
coordinates
[
x0, x j]

κ
≡ x0 ∗ x j − x j ∗ x0 = i

κ
x j, [xi, x j]κ = 0,

which reproduces the commutation relation (1).
To understand the differential structure, one has to incorporate

the (co-)tangent space and investigate the action of IGL(4, R) on
the space. Suppose that one constructs a set of basis vectors of a
coordinate system CS = {ea | a = 0,1,2,3} of the four-dimensional
vector space V 4 which are not necessarily ortho-normal. One nat-
urally demands that the homogeneous transformation Λ acts on
the coordinates xa , the dual-basis of the coordinate system ea , and
a function f as

Λ:

⎧⎪⎪⎨
⎪⎪⎩

xa → xa′ ; xa′ = xbΛa′
b ,

ea → ea′ ; ea′ = ebΛa′
b ,

f → f ′; f ′(x′) = f (x) = f (xb′
(Λ−1)a

b′ ),

(8)

and the translation T by the amount of coordinate vector ya as

T
(

ya):

⎧⎪⎨
⎪⎩

xa → xa′ ; xa′ = xa + ya,

ea → ea′ ; ea′ = ea,

f → f ′; f ′(xa′
) = f (xa) = f (xa′ − ya).

(9)

Then, the infinitesimal transformation is given in terms of igl(4, R)

generators:

δε S = −iεc Yc � S. (10)

The action of Ma
b is represented by

Ma
b � xc = −ixaδc

b, Ma
b � ec = −ieaδc

b,(
Ma

b � f
)(

xc) = −ixa ∂

∂xb
f
(
xc), (11)

and of Pa by

Pa � xb = −iδb
a , Pa � eb = 0,

(Pa � f )
(
xb) = −i

∂

∂xa
f
(
xb). (12)

Note that the translation and thus, the energy operator E does
not change the dual basis vector ea . On the other hand, the spatial
dilatation operator D non-trivially acts as:

exp(iαD) � xa = xa
(α) exp(iαD)�,

exp(iαD) � ea = ea
(α) exp(iαD)�,(

exp(iαD) � f
)(

xa) = f
(
xa
(α)

)
,

where xa
(α) = (x0, exp(α) xi) and ea

(α) = (e0, exp(α) ei). This non-
trivial transformation law provides the ∗-product between the
space coordinates and/or the dual-basis vectors {xa, ea}. Between
the two basis vectors, we have

ea ∗ eb = ·[F −1
κ

(
ea ⊗ eb)] = eaeb,

where the time translational invariance (12) E � ea = 0 is used.
Between ea and xb we have

ea ∗ xb = m
[

F −1
κ

(
ea ⊗ xb)] = eaxb − i

2κ
δa

i δ
b
0ei,

xb ∗ ea = m
[

F −1
κ

(
xb ⊗ ea)] = eaxb + i

2κ
δa

i δ
b
0ei,

which results in the commutation relation

[
ea, eb]

κ
= 0,

[
x0, ei]

κ
= i

κ
ei,

[
x0, e0]

κ
= 0 = [

xi, ea]
κ
. (13)
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