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A model of an emergent universe is formulated using the mechanism of particle creation. Here the
universe is considered as a non-equilibrium thermodynamical system with dissipation due to particle
creation mechanism. The universe is chosen as spatially flat FRW space-time and the cosmic substratum
is chosen as perfect fluid with barotropic equation of state. Both first and second order deviations from
equilibrium prescription are considered and it is found that the scenario of emergent universe is possible
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1. Introduction

To overcome the initial singularity (big bang) of standard cos-
mology, there are various proposed cosmological scenarios which
can be classified as bouncing universes or the emergent universes.
Here we shall focus on the second choice which arises due to the
search for singularity free inflationary models in the context of
classical general relativity. In fact, an emergent universe is a model
universe in which there is no time-like singularity, ever existing
and having almost static behavior in the infinite past (t — —o0).
Eventually the model evolves into an inflationary stage. Also the
emergent universe scenario can be said to be a modern version
and extension of the original Lemaitre-Eddington universe.

Harrison [1] in 1967 obtained a model of the closed universe
with only radiation and showed that asymptotically (as t — —o0)
it approaches the state of an Einstein static model. Then after a
long gap, Ellis and Maartens [2], Ellis et al. [3] in recent past
were able to formulate closed universes with a minimally cou-
pled scalar field ¢ with a special form for the self-interacting
potential and possibly some ordinary matter with equation of
state p = a),o(—% < w < 1). However, exact analytic solutions were
not presented in their work, only the asymptotic behavior agrees
with emergent universe scenario. Subsequently, Mukherjee et al.
[4] obtained solutions for Starobinsky model with features of an
emergent universe. Also Mukherjee et al. [5] formulated a general
framework for an emergent universe model using an ad hoc equa-
tion of state which has exotic behavior in some cases. Afterwords,
a lot of works [6-13] have been done to model emergent universe
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for different gravity theories as well as for various type of mat-
ter. Very recently, the idea of quantum tunneling has been used to
model emergent universe [14]. Here the initial static state is char-
acterized by a scalar field in a false vacuum and then it decays to
a state of true vacuum through quantum tunneling.

From the thermodynamical aspect it has been proposed that
entropy consideration favors the Einstein static state as the initial
state for our universe [15,16]. Also, recently, Pavon et al. [17,18]
have examined the validity of the generalized second law of ther-
modynamics in the transition from a generic initial Einstein static
phase to the inflationary phase and also from the end of the in-
flation to the conventional thermal radiation dominated era. In
this context, the present work is quite different. Here universe
is considered as a non-equilibrium thermodynamical system with
dissipative phenomena due to particle creation. Both first and
second order deviations from equilibrium configuration are taken
into account and emergent universe solutions are possible in both
the cases. The paper is organized as follows: Section 2 describes
the particle creation in cosmology from the perspective of non-
equilibrium thermodynamics. Emergent universe scenario has been
presented both for first and second order non-equilibrium thermo-
dynamics in Sections 3 and 4 respectively. Finally, summary of the
present work has been presented in Section 5.

2. Particle creation in cosmology: Non-equilibrium
thermodynamics

Suppose there are N particles in a closed thermodynamical sys-
tem having internal energy E. Then the first law of thermodynam-
ics is essentially the conservation of internal energy as [19]

dE=dQ — pdV (1)
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where as usual p is the thermodynamic pressure, V is any co-

moving volume and dQ represents the heat received by the system
E

in time dt. By introducing, the energy density p = y;, the particle
number density n = % and heat per unit particle dq = dWQ, the

above conservation equation can be rewritten as

Tds:dq:d(%)—i—pd(%) 2)

This is referred to as Gibbs equation with s, the entropy per par-
ticle. This equation is also true when the particle number is not
conserved, i.e. the system is not a closed system [20].

Thus for an open thermodynamical system, the non-conserva-
tion of fluid particles (N;’L #0) is expressed mathematically as

n+6&n=nl (3)

where N# =nu* is the particle flow vector, u* is the particle four
velocity, ©® = uf‘u is the fluid expansion, I is termed as the rate
of change of the particle number in a comoving volume V and by
notation n = n ,ut. The positivity of the parameter I" indicates
creation of particles while there is annihilation of particles for
I' <0. Any non-zero I" will behave as an effective bulk pressure
of the thermodynamical fluid and non-equilibrium thermodynam-
ics should come into picture [21].

We shall consider spatially flat FRW model of the universe as
an open thermodynamical system which is non-equilibrium in na-
ture due to particle creation mechanism. Now the Einstein field
equations are

K(p+p—+IT)=-2H (4)

where the cosmic fluid is characterized by the energy-momentum
tensor

kp =3H?,

T,=(p+p+Muuu’+(p+1)g, (5)
The energy conservation relation T;‘f)v =0 takes the form

P+3H(p+p+I)=0 (6)

In the above Einstein field equations (i.e. Eq. (4)) x = 811G is
the Einstein’s gravitational constant and the pressure term I7 is
related to some dissipative phenomena (say bulk viscosity).

However, in the present context, the cosmic fluid may be con-
sidered as perfect fluid where the dissipative term I7 is the effec-
tive bulk viscous pressure due to particle creation or equivalently
the conventional dissipative fluid is not taken as cosmic substra-
tum, rather a perfect fluid with varying particle number is con-
sidered. This equivalence can be nicely described for adiabatic (or
isentropic) particle production as follows [21-23]. Now, using the
conservation equations (3) and (6) the entropy variation can be
obtained from the Gibbs equation (2) as

nT$=—3HII —I'(p+p) (7)

with T, the temperature of the fluid If the thermodynamical sys-
tem is chosen as an adiabatic system, i.e. entropy per particle is
constant (variable in dissipative process) (), then from the above
relation (7) the effective bulk pressure is determined by particle
creation rate as

n=—L(p+p (8)
3H

Thus for isentropic thermodynamical process a perfect fluid with
particle creation phenomena is equivalent to a dissipative fluid.
Further, it should be noted that in the adiabatic process the en-
tropy production is caused by the enlargement of the phase space

(also due to expansion of the universe in the present model). This
effective bulk pressure does not correspond to conventional non-
equilibrium phase, rather a state having equilibrium properties as
well (note that it is not the equilibrium era with I" = 0).

Eliminating the effective bulk pressure from the Einstein field
equations (4) using the isentropic condition (8) we have

I 1+ 2 (H (9)
3H 3y \ H2

with y, the adiabatic index (i.e. p = (y — 1)p). Thus, if we know
the cosmological evolution then from the above equation the par-
ticle creation rate can be determined or otherwise, assuming the
particle creation rate as a function of the Hubble parameter one
can determine the corresponding cosmological phase which we
shall try in the next two sections.

3. Emergent universe in first order non-equilibrium
thermodynamics

In first order theory due to Eckart [24] the entropy flow vector
is defined as
s’EL =nsut (10)
So using the number conservation equation (3) and the isen-
tropic condition (8) we obtain (suffix stands for the corresponding
variable in Eckart’s theory)

Ig n,uI“E

my __ME e

(5k).. = T (3H+ T ) (11)
where

M:(pnﬂ>_rs (12)

is the chemical potential. As it has been shown above that particle
production is effectively equivalent to a viscous pressure, so for the
validity of the second law of thermodynamics, i.e. (s’EL);M >0,itis
reasonable to assume [22]

nul
175=—§<3H+ H E) (13)
ITg
As a result, we have
72
wy _ Mg
(SE);,u,_ TC 20 (14)

where ¢ is termed as bulk viscous coefficient and the bulk viscous
pressure satisfies the inhomogeneous quadratic relation

M2 +3¢MgH = —¢tnule (15)

It should be noted that the familiar linear relation for bulk vis-
cous pressure, i.e. [T = —3¢H, may be recovered from the above
quadratic relation (15) either by It =0 or u = 0. Now using
Eq. (8) in (13) to eliminate I'r we have

I = _3§effH (16)

where o = (/'}STTP)L
By the second Friedmann equation in Eq. (4) and using Eq. (16)

one obtains the differential equation in H as

2H = —3yH? +3¢kH (17)

where for simplicity chemical potential is chosen to be zero so
that Ze = ¢. Now solving Eq. (17) the Hubble parameter can be
obtained as
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