ELSEVIER

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Quantum hoop conjecture: Black hole formation by particle collisions

Roberto Casadio a,b,*, Octavian Micu c, Fabio Scardigli d,e

- ^a Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy
- ^b I.N.F.N., Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
- ^c Institute of Space Science, Bucharest, P.O. Box MG-23, RO-077125 Bucharest-Magurele, Romania
- ^d Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- ^e Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

ARTICLE INFO

Article history: Received 1 February 2014 Received in revised form 12 March 2014 Accepted 18 March 2014 Available online 21 March 2014 Editor: B Grinstein

ABSTRACT

We address the issue of (quantum) black hole formation by particle collision in quantum physics. We start by constructing the horizon wave-function for quantum mechanical states representing two highly boosted non-interacting particles that collide in flat one-dimensional space. From this wave-function, we then derive a probability that the system becomes a black hole as a function of the initial momenta and spatial separation between the particles. This probability allows us to extend the hoop conjecture to quantum mechanics and estimate corrections to its classical counterpart.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP³.

1. Introduction

The general relativistic (GR) description of the gravitational collapse, leading to the formation of black holes (BHs), was first investigated in the seminal papers of Oppenheimer and co-workers [1], but a thorough understanding of the physics of such processes still stands as one of the most challenging issues for contemporary theoretical physics. The literature on the subject has grown immensely (see, e.g. Ref. [2]), but many technical and conceptual difficulties remain unsolved, particularly if one tries to account for the quantum mechanical (QM) nature of collapsing matter. What is unanimously accepted is that the gravitational interaction becomes important whenever a large enough amount of matter is "compacted" within a sufficiently small volume. K.S. Thorne formulated this idea in the hoop conjecture [3], which states that a BH forms if two colliding objects fall within their "black disk". Assuming the final configuration is (approximately) spherically symmetric, this occurs when the system occupies a sphere whose radius r is smaller than the gravitational Schwarzschild radius,

$$r \lesssim R_{\rm H} \equiv 2\ell_{\rm p} \frac{E}{m_{\rm p}},\tag{1}$$

where E is the total energy in the centre-of-mass frame (see next section for more details). Note that we use units with c = 1, the

E-mail addresses: casadio@bo.infn.it (R. Casadio), octavian.micu@spacescience.ro (O. Micu), fabio@phys.ntu.edu.tw (F. Scardigli).

Newton constant $G_{\rm N}=\ell_{\rm p}/m_{\rm p}$, where $\ell_{\rm p}$ and $m_{\rm p}$ are the Planck length and mass, respectively, and $\hbar=\ell_{\rm p}m_{\rm p}.^1$

The hoop conjecture applies to astrophysical bodies, whose energy is orders of magnitude above the scale of quantum gravity, and can therefore be reasonably described by classical GR [2-5]. One of the most important questions which then arises is what happens when the total energy of the colliding particles is of the Planck size or less [6]. Just to give this question a precise meaning is a conceptual challenge, because QM effects may hardly be neglected [7], and the very notion of horizon becomes "fuzzy". In fact, it was recently proposed in Refs. [8] to define a wave-function for the horizon, which can be associated with any localised QM particle. The auxiliary wave-function yields the probability of finding a horizon of a certain radius centred around the source, and one can therefore determine the probability that a QM particle is a BH depending on its mass. This probability is found to vanish very fast for particles lighter than the Planck mass, as one expects from qualitative arguments.

We remark that a realistic description of quantum (with $E \simeq m_{\rm p}$) [9] or classical $(E \gg m_{\rm p})$ BHs very likely requires the knowledge of their microscopic structure [10]. We however do not consider such important details here, and just address the conceptual problem of developing a framework which can be used to study the formation of horizons in systems containing QM sources. Of course, a more canonical framework already exists, in principle,

^{*} Corresponding author.

 $^{^{1}}$ These units make it apparent that $G_{\rm N}$ converts mass into length, thus providing a natural link between energy and positions.

and is given by quantum field theory on curved backgrounds coupled to the semiclassical Einstein equations [11]. Thereby, one should be able to describe quantum matter states on a sufficiently arbitrary space–time, which is to be determined self-consistently by solving the Einstein equations with the corresponding renormalised matter energy-momentum tensor. Since obtaining the normal modes and building the matter Fock space is in general impossible, this procedure has failed to provide practical estimates so far.²

In this work, after reviewing the case of a single spherically symmetric particle, we shall consider two-particle QM states and build their horizon wave-function. This construction will naturally lead to a QM generalisation of the hoop conjecture and specific corrections to its classical formulation (1). It is important to remark from the onset that these results will be obtained analytically, but at the price of making several rather strong simplifying assumptions. In particular, we shall just consider free particles in one spatial dimension, and neglect any space–time curvature.

2. Horizon wave-function in spherical symmetry

Inspired by Eq. (1), we can define a horizon wave-function given the QM wave-function of a particle in position space [8]. The idea stems from the classical GR theory of spherically symmetric systems, for which the metric $g_{\mu\nu}$ can always be written as

$$ds^{2} = g_{ii} dx^{i} dx^{j} + r^{2}(x^{i})(d\theta^{2} + \sin^{2}\theta d\phi^{2}),$$
 (2)

with $x^i = (x^1, x^2)$ coordinates on surfaces where the angles θ and ϕ are constant. The location of a trapping horizon, a surface where the escape velocity equals the speed of light, is determined by the equation [5]

$$0 = g^{ij} \nabla_i r \nabla_j r = 1 - \frac{2M}{r},\tag{3}$$

where $\nabla_i r$ is the covector perpendicular to surfaces of constant area $\mathcal{A}=4\pi r^2$. The function $M=\ell_{\rm p}m/m_{\rm p}$ is the active (Misner-Sharp) gravitational mass, representing the total energy enclosed within a sphere of radius r and, if we set $x^1=t$ and $x^2=r$, we find

$$M(t,r) = \frac{4\pi \ell_{\rm p}}{3m_{\rm p}} \int_{0}^{r} \rho(t,\bar{r})\bar{r}^2 \,\mathrm{d}\bar{r},\tag{4}$$

as if the space inside the sphere were flat.

For elementary particles we know for an experimental fact that QM effects may not be neglected [7]. In fact, the Heisenberg principle of QM introduces an uncertainty in the spatial localisation of a spinless point-like source of mass m, typically of the order of the Compton-de Broglie length,

$$\lambda_m \simeq \ell_p m_p / m.$$
 (5)

Assuming QM is a better description of reality implies that the Schwarzschild radius in Eq. (1) with E=m only makes sense if $R_{\rm H}\gtrsim \lambda_m$, or $m\gtrsim m_{\rm p}$ (and $M\gtrsim \ell_{\rm p}$). Note we employed the flat space Compton length (5), which is likely the particle's self-gravity will affect, but it is still a reasonable order of magnitude estimate, and BHs can therefore only exist with mass (much) larger than the Planck scale.

Let us now consider a QM state ψ_S representing a massive particle *localised in space* and *at rest* in the chosen reference frame.

Having defined suitable Hamiltonian eigenmodes, $\hat{H}|\psi_E\rangle=E|\psi_E\rangle$, where H can be specified depending on the model we wish to consider, the state ψ_S can be decomposed as

$$|\psi_{S}\rangle = \sum_{E} C(E)|\psi_{E}\rangle. \tag{6}$$

If we further assume the particle is *spherically symmetric*, we can invert the expression of the Schwarzschild radius in Eq. (1) to obtain E as a function of $R_{\rm H}$. We then define the *horizon wave-function* as

$$\psi_{\rm H}(R_{\rm H}) \propto C(m_{\rm p}R_{\rm H}/2\ell_{\rm p}),$$
 (7)

whose normalisation is finally fixed in the inner product

$$\langle \psi_{\rm H} | \phi_{\rm H} \rangle = 4\pi \int_0^\infty \psi_{\rm H}^*(R_{\rm H}) \phi_{\rm H}(R_{\rm H}) R_{\rm H}^2 \, \mathrm{d}R_{\rm H}. \tag{8}$$

We interpret the normalised wave-function $\psi_{\rm H}$ simply as yielding the probability that we would detect a horizon of areal radius $r=R_{\rm H}$ associated with the particle in the QM state $\psi_{\rm S}$. Such a horizon is necessarily "fuzzy", like the position of the particle itself. The probability density that the particle lies inside its own horizon of radius $r=R_{\rm H}$ will next be given by

$$P_{<}(r < R_{\rm H}) = P_{\rm S}(r < R_{\rm H})P_{\rm H}(R_{\rm H}),$$
 (9)

where $P_{\rm S}(r < R_{\rm H}) = 4\pi \int_0^{R_{\rm H}} |\psi_{\rm S}(r)|^2 r^2 \, {\rm d} r$ is the probability that the particle is inside a sphere of radius $r=R_{\rm H}$, and $P_{\rm H}(R_{\rm H})=4\pi R_{\rm H}^2 |\psi_{\rm H}(R_{\rm H})|^2$ is the probability that the horizon is located on the sphere of radius $r=R_{\rm H}$. Finally, the probability that the particle described by the wave-function $\psi_{\rm S}$ is a BH will be obtained by integrating (9) over all possible values of the radius,

$$P_{\rm BH} = \int_{0}^{\infty} P_{<}(r < R_{\rm H}) \, \mathrm{d}R_{\rm H}. \tag{10}$$

The above general formulation can be easily applied to a particle described by a spherically symmetric Gaussian wave-function, for which one obtains a vanishing probability that the particle is a BH when its mass is smaller than about $m_{\rm p}/4$ (for all the details, see Refs. [8]).

3. Two-particle collisions in one dimension

It is straightforward to extend the above construction to a state containing two free particles in one-dimensional flat space. We again represent each particle at the time t=0 and position X_i (i=1 or 2) by means of Gaussian wave-functions,

$$\langle x_i; 0 | \psi_S^{(i)} \rangle \equiv \psi_S(x_i) = e^{-i\frac{P_i x_i}{\hbar}} \frac{e^{-\frac{(x_i - X_i)^2}{2\ell_i}}}{\sqrt{\pi^{1/2}\ell_i}},$$
 (11)

where ℓ_i is the width and P_i the linear momentum (which remain constant). The total initial wave-function is then just the product of the two one-particle states,

$$\langle x_1, x_2; 0 | \psi_S^{(1,2)} \rangle \equiv \psi_S(x_1, x_2) = \psi_S(x_1) \psi_S(x_2).$$
 (12)

Like in the one-particle case or Refs. [8], it is convenient to go through momentum space in order to compute the spectral decomposition. We find

$$\langle p_i; 0 | \psi_S^{(i)} \rangle \equiv \psi_S(p_i) = e^{-i\frac{p_i X_i}{\hbar}} \frac{e^{-\frac{(p_i - P_i)^2}{2\Delta_i}}}{\sqrt{\pi^{1/2} \Delta_i}},$$
 (13)

² Computing the back-reaction of Hawking radiation on a BH space-time is the typical example of such failures.

Download English Version:

https://daneshyari.com/en/article/1853144

Download Persian Version:

https://daneshyari.com/article/1853144

<u>Daneshyari.com</u>