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We address the issue of (quantum) black hole formation by particle collision in quantum physics. We
start by constructing the horizon wave-function for quantum mechanical states representing two highly
boosted non-interacting particles that collide in flat one-dimensional space. From this wave-function, we
then derive a probability that the system becomes a black hole as a function of the initial momenta
and spatial separation between the particles. This probability allows us to extend the hoop conjecture to
quantum mechanics and estimate corrections to its classical counterpart.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

The general relativistic (GR) description of the gravitational col-
lapse, leading to the formation of black holes (BHs), was first inves-
tigated in the seminal papers of Oppenheimer and co-workers [1],
but a thorough understanding of the physics of such processes
still stands as one of the most challenging issues for contempo-
rary theoretical physics. The literature on the subject has grown
immensely (see, e.g. Ref. [2]), but many technical and conceptual
difficulties remain unsolved, particularly if one tries to account for
the quantum mechanical (QM) nature of collapsing matter. What is
unanimously accepted is that the gravitational interaction becomes
important whenever a large enough amount of matter is “compact-
ed” within a sufficiently small volume. K.S. Thorne formulated this
idea in the hoop conjecture [3], which states that a BH forms if two
colliding objects fall within their “black disk”. Assuming the final
configuration is (approximately) spherically symmetric, this occurs
when the system occupies a sphere whose radius r is smaller than
the gravitational Schwarzschild radius,

r � RH ≡ 2�p
E

mp
, (1)

where E is the total energy in the centre-of-mass frame (see next
section for more details). Note that we use units with c = 1, the
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Newton constant GN = �p/mp, where �p and mp are the Planck
length and mass, respectively, and h̄ = �pmp.1

The hoop conjecture applies to astrophysical bodies, whose en-
ergy is orders of magnitude above the scale of quantum gravity,
and can therefore be reasonably described by classical GR [2–5].
One of the most important questions which then arises is what
happens when the total energy of the colliding particles is of the
Planck size or less [6]. Just to give this question a precise mean-
ing is a conceptual challenge, because QM effects may hardly be
neglected [7], and the very notion of horizon becomes “fuzzy”. In
fact, it was recently proposed in Refs. [8] to define a wave-function
for the horizon, which can be associated with any localised QM
particle. The auxiliary wave-function yields the probability of find-
ing a horizon of a certain radius centred around the source, and
one can therefore determine the probability that a QM particle is a
BH depending on its mass. This probability is found to vanish very
fast for particles lighter than the Planck mass, as one expects from
qualitative arguments.

We remark that a realistic description of quantum (with
E � mp) [9] or classical (E � mp) BHs very likely requires the
knowledge of their microscopic structure [10]. We however do not
consider such important details here, and just address the con-
ceptual problem of developing a framework which can be used to
study the formation of horizons in systems containing QM sources.
Of course, a more canonical framework already exists, in principle,

1 These units make it apparent that GN converts mass into length, thus providing
a natural link between energy and positions.
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and is given by quantum field theory on curved backgrounds cou-
pled to the semiclassical Einstein equations [11]. Thereby, one
should be able to describe quantum matter states on a sufficiently
arbitrary space–time, which is to be determined self-consistently
by solving the Einstein equations with the corresponding renor-
malised matter energy-momentum tensor. Since obtaining the
normal modes and building the matter Fock space is in general
impossible, this procedure has failed to provide practical estimates
so far.2

In this work, after reviewing the case of a single spherically
symmetric particle, we shall consider two-particle QM states and
build their horizon wave-function. This construction will naturally
lead to a QM generalisation of the hoop conjecture and specific
corrections to its classical formulation (1). It is important to re-
mark from the onset that these results will be obtained analyti-
cally, but at the price of making several rather strong simplifying
assumptions. In particular, we shall just consider free particles in
one spatial dimension, and neglect any space–time curvature.

2. Horizon wave-function in spherical symmetry

Inspired by Eq. (1), we can define a horizon wave-function
given the QM wave-function of a particle in position space [8]. The
idea stems from the classical GR theory of spherically symmetric
systems, for which the metric gμν can always be written as

ds2 = gij dxi dx j + r2(xi)(dθ2 + sin2 θ dφ2), (2)

with xi = (x1, x2) coordinates on surfaces where the angles θ and
φ are constant. The location of a trapping horizon, a surface where
the escape velocity equals the speed of light, is determined by the
equation [5]

0 = gij∇ir∇ jr = 1 − 2M

r
, (3)

where ∇ir is the covector perpendicular to surfaces of constant
area A = 4πr2. The function M = �pm/mp is the active (Misner-
Sharp) gravitational mass, representing the total energy enclosed
within a sphere of radius r and, if we set x1 = t and x2 = r, we
find

M(t, r) = 4π�p

3mp

r∫
0

ρ(t, r̄)r̄2 dr̄, (4)

as if the space inside the sphere were flat.
For elementary particles we know for an experimental fact that

QM effects may not be neglected [7]. In fact, the Heisenberg prin-
ciple of QM introduces an uncertainty in the spatial localisation of
a spinless point-like source of mass m, typically of the order of the
Compton–de Broglie length,

λm � �pmp/m. (5)

Assuming QM is a better description of reality implies that the
Schwarzschild radius in Eq. (1) with E = m only makes sense if
RH � λm , or m � mp (and M � �p). Note we employed the flat
space Compton length (5), which is likely the particle’s self-gravity
will affect, but it is still a reasonable order of magnitude estimate,
and BHs can therefore only exist with mass (much) larger than the
Planck scale.

Let us now consider a QM state ψS representing a massive par-
ticle localised in space and at rest in the chosen reference frame.

2 Computing the back-reaction of Hawking radiation on a BH space–time is the
typical example of such failures.

Having defined suitable Hamiltonian eigenmodes, Ĥ|ψE 〉 = E|ψE 〉,
where H can be specified depending on the model we wish to
consider, the state ψS can be decomposed as

|ψS〉 =
∑

E

C(E)|ψE〉. (6)

If we further assume the particle is spherically symmetric, we can
invert the expression of the Schwarzschild radius in Eq. (1) to
obtain E as a function of RH. We then define the horizon wave-
function as

ψH(RH) ∝ C(mp RH/2�p), (7)

whose normalisation is finally fixed in the inner product

〈ψH|φH〉 = 4π

∞∫
0

ψ∗
H(RH)φH(RH)R2

H dRH. (8)

We interpret the normalised wave-function ψH simply as yield-
ing the probability that we would detect a horizon of areal radius
r = RH associated with the particle in the QM state ψS. Such a
horizon is necessarily “fuzzy”, like the position of the particle it-
self. The probability density that the particle lies inside its own
horizon of radius r = RH will next be given by

P<(r < RH) = PS(r < RH)PH(RH), (9)

where PS(r < RH) = 4π
∫ RH

0 |ψS(r)|2r2 dr is the probability that
the particle is inside a sphere of radius r = RH, and PH(RH) =
4π R2

H|ψH(RH)|2 is the probability that the horizon is located on
the sphere of radius r = RH. Finally, the probability that the parti-
cle described by the wave-function ψS is a BH will be obtained by
integrating (9) over all possible values of the radius,

PBH =
∞∫

0

P<(r < RH)dRH. (10)

The above general formulation can be easily applied to a particle
described by a spherically symmetric Gaussian wave-function, for
which one obtains a vanishing probability that the particle is a BH
when its mass is smaller than about mp/4 (for all the details, see
Refs. [8]).

3. Two-particle collisions in one dimension

It is straightforward to extend the above construction to a state
containing two free particles in one-dimensional flat space. We
again represent each particle at the time t = 0 and position Xi
(i = 1 or 2) by means of Gaussian wave-functions,

〈
xi;0

∣∣ψ(i)
S

〉 ≡ ψS(xi) = e−i
Pi xi

h̄
e
− (xi−Xi )

2

2�i√
π1/2�i

, (11)

where �i is the width and Pi the linear momentum (which remain
constant). The total initial wave-function is then just the product
of the two one-particle states,〈
x1, x2;0

∣∣ψ(1,2)
S

〉 ≡ ψS(x1, x2) = ψS(x1)ψS(x2). (12)

Like in the one-particle case or Refs. [8], it is convenient to go
through momentum space in order to compute the spectral de-
composition. We find

〈
pi;0

∣∣ψ(i)
S

〉 ≡ ψS(pi) = e−i
pi Xi

h̄
e
− (pi−Pi )

2

2
i√
π1/2
i

, (13)
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