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We study the spectrum of quasiparticles in a scalar quantum field theory at high temperature. Our results
indicate the existence of novel quasiparticles with purely collective origin at low momenta for some
choices of the masses and coupling. Scalar fields play a prominent role in many models of cosmology,
and their collective excitations could be relevant for transport phenomena in the early universe.
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1. Introduction

Quantum field theory provides the most fundamental descrip-
tion of matter and radiation we know and solves the apparent
“wave particle dualism” in a consistent way. With quantised fields
being the fundamental building blocks of nature, the elementary
excitations of these fields in weakly coupled systems propagate
like particles. Curiously, there are not only elementary particles;
in a medium the collective excitations of many elementary quanta
often effectively behave as if they were particles themselves.

Often one is not interested in the fate of individual particles,
but mostly in transport of energy or charges within a system.
Transport phenomena can be studied in a thermodynamic descrip-
tion in terms of a density matrix �. The propagator in this effective
thermodynamic description can have a rather different structure
than in vacuum. This reflects the fact that propagating particles
are affected by the medium. In weakly coupled systems this effect
can often be parametrised by interpreting the poles of the prop-
agator as quasiparticles with modified properties. For instance, the
dispersion relations (or “bands”) of electrons in a solid state can
be very different from that in vacuum. Also the effective charge
is screened in a medium. In addition to the screened elementary
particles there can be new types of quasiparticles that have no
analogue in vacuum. These can be interpreted as quantised collec-
tive excitations of the background medium. For instance, in a solid
state the lattice vibrations, phonons, behave like quasiparticles. The
existence of collective excitations is also well-known from relativis-
tic quantum field theory. In gauge theories with coupling α � 1 in
thermal equilibrium at high temperature T there are fermionic ex-
citations with soft momenta p ∼ αT [1–5] and ultrasoft momenta
p ∼ α2T [6,7] which have no analogue in vacuum. These are often
referred to as holes or plasminos. Collective fermionic excitations
have also been found in models with Yukawa interactions [8–10].

Also longitudinal gauge bosons appear at finite temperature with
a dispersion relation that differs from the transverse components.

In this work we find evidence that collective excitations can
also exist in purely scalar field theories. The existence of collective
propagating modes in principle is expected; in particular hydro-
dynamic modes, such as sound waves, should appear in the spec-
trum of any field theory. However, to the best of our knowledge,
quasiparticles beyond the hydrodynamic regime have not been de-
scribed explicitly in the context of purely scalar field theories. On
one hand, their existence can simply be viewed as an interesting
property of the field theory. On the other hand, current experimen-
tal evidence [11,12] suggests that there is at least one scalar field
in nature, the Higgs field. Furthermore, many models of cosmology
involve additional scalar fields, such as axions, the inflaton, dila-
ton, moduli fields or Affleck–Dine fields. Since the universe was
exposed to very high temperatures during the early stages of its
history, the spectrum of scalar quasiparticles may have affected
transport phenomena in the early universe.

2. The quasiparticle spectrum in a simple scalar model

We consider a simple model of two scalar fields described by
the Lagrangian

L = 1

2
∂μφ∂μφ − 1

2
m2

φφ2 + 1

2
∂μχ∂μχ − 1

2
m2

χχ2 − gφχ2. (1)

We choose this Lagrangian for illustrative purposes, as it describes
the (probably) simplest scalar model in which the additional col-
lective excitations we found appear. We expect that similar be-
haviour can be found in more realistic models where the structure
of the self-energies is similar.1

1 Note that the energy functional obtained from (1) is not bound from below. For
the purpose of illustrating the appearance of collective scalar quasiparticles we will
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2.1. Quasiparticles in thermal field theory

Following the approach of [13–15] we study the system in
terms of real time correlation functions. This approach has been
applied to scalar fields in different situations [16–31] relevant for
cosmology. We use the notation of [20]. The expectation values
or one-point functions 〈φ(x)〉 and 〈χ(x)〉 play the role of the
“classical field”. The average 〈· · ·〉 is defined in the usual way as
〈A〉 = Tr(�A), where � is the density matrix of the thermody-
namic ensemble. It includes the usual quantum average as well as
a statistical average over initial conditions. We will in the follow-
ing assume that all degrees of freedom are in thermal equilibrium
and set 〈φ(x)〉 = 〈χ(x)〉 = 0. Quasiparticle properties are encoded
in the propagator or two-point function. We can define two inde-
pendent two-point functions for φ,

�−(x1, x2) = i
(〈
φ(x1)φ(x2)

〉 − 〈
φ(x2)φ(x1)

〉)
(2)

�+(x1, x2) = 1

2

(〈
φ(x1)φ(x2)

〉 + 〈
φ(x2)φ(x1)

〉)
, (3)

and analogously for χ . �− is called the spectral function. It en-
codes the properties of quasiparticles and is the main quantity of
interest in this work. �+ is called the statistical propagator and
characterises the occupation numbers of different modes. Out of
thermal equilibrium, �−(x1, x2) and �+(x1, x2) would be two in-
dependent functions, and each of them would depend on x1 and
x2 individually. Thermal equilibrium is homogeneous, isotropic and
time translation invariant, hence the correlation functions can only
depend on the relative coordinate x1 − x2.2 This allows to define
the Fourier transform

ρp(p0) = −i

∫
d4(x1 − x2) eip0(t1−t2)e−ip(x1−x2)�−(x1 − x2). (4)

It can be expressed as [20]

ρp(p0) = −2 ImΠ R
p (p0) + 2p0ε

(p2
0 − m2 − p2 − ReΠ R

p (p0))2 + (ImΠ R
p (p0) + p0ε)2

.

(5)

Here Π R
p (p0) is the Fourier transform of the usual retarded self-

energy, in this case

Π R
φ (x1, x2) = g2θ(t1 − t2)

(
χ(x1)χ(x1)χ(x2)χ(x2)

− χ(x2)χ(x2)χ(x1)χ(x1)
)
, (6)

and analogous for χ . In (5) we have not specified whether we refer
to φ or χ ; both spectral densities formally have the same shape
except for the replacement m → mφ or m → mχ and the insertion
of the corresponding self-energy. The pole structure of ρp(p0) in
the complex p0 plane determines the spectrum of quasiparticles.
In vacuum there would be only one pole for positive p0 at p0 =
ωp ≡ (p2 + m2)1/2, where m is the renormalised mass. At T > 0
there can be several poles, which we will label by an index i . We
refer to the pole that converges to ωp in the limit T → 0 as the
screened one-particle state, and to all other poles as purely collective
excitations.

ignore this issue here and consider small excitations around the local minimum at
φ = χ = 0, assuming that (1) is embedded into a bigger framework that stabilises
the ground state.

2 Furthermore, in thermal equilibrium �− and �+ are not independent, but re-
lated by the Kubo–Martin–Schwinger relation, which for their Fourier transforms
reads �+

p (p0) = 1+2 f B (p0)
2 ρp(p0). Here f B is the Bose–Einstein distribution. This is

the quantum field theoretical version of the detailed balance relation.

Π R
p (p0) can be expressed as the sum of a vacuum contribution

and a temperature dependent medium correction. The real part of
the vacuum contribution contains the usual UV divergence that
also appears in vacuum, the temperature dependent part is UV-
finite. It is common to impose renormalisation conditions at T = 0
to absorb the divergence and define the physical mass [19,20].
We will in the following simply interpret mφ and mχ as physical
masses in vacuum after renormalisation and ReΠ R

p (p0) as the re-

maining finite piece.3 Let Ω̂ i
p be a pole of ρp(p0) with Ω i

p ≡ Re Ω̂ i
p

and Γ i
p ≡ 2 Im Ω̂ i

p . Ω i
p and Γ i

p are temperature dependent because

Π R
p (ω) depends on T . In weakly coupled theories one usually ob-

serves the hierarchy

Γ i
p � Ω i

p. (7)

Due to (7) we can interpret Ω i
p as a quasiparticle4 dispersion re-

lation (or “thermal mass shell”) and Γ i
p as its thermal width (or

damping rate). Near poles that fulfil (7) the spectral density can be
approximated by

ρBW
p (p0)

∣∣
p0�Ω i

p
�

∑
i

2Z i
p

p0Γ
i

p

(p2
0 − (Ω i

p)2)2 + (p0Γ
i

p)2

+ ρcont
p (p0) (8)

Here the residue and width are given by

Z i
p =

[
1 − 1

2Ω i
p

∂ ReΠ R
p (p0)

∂ p0

]−1

p0=Ω i
p

,

Γ i
p = −Z i

p

Im Π R
p (Ω i

p)

2Ω i
p

. (9)

In the zero-width limit the it reads

ρ0
p(p0) =

∑
i

Z i
p2π sign(p0)δ

(
p2

0 − (
Ω i

p

)2) + ρcont
p (p0), (10)

which can be compared to the free spectral density

ρfree
p (p0) = 2πsign(p0)δ

(
p2

0 − ω2
p

)
. (11)

The dispersion relation in (10) is essentially fixed by ReΠ R
p (p0) via

the condition

p2
0 − p2 − m2 − ReΠ R

p (p0) = 0. (12)

For this reason the real and imaginary part of the retarded self-
energy are often referred to as the dispersive self-energy and dis-
sipative self-energy, respectively.

The dispersion relations Ω i
p can have a complicated p-depen-

dence. In limited momentum regimes they can often be approx-
imated by momentum independent “thermal masses”. For hard
modes p ∼ T it is common to define the asymptotic mass M ,
which depends on T but not on p, by fitting the approxima-
tion (p2 + M2)1/2 to the full dispersion relation in the regime
p � T . This approximation is commonly used in transport equa-
tions because most particles in a plasma in thermal equilibrium
have momenta p ∼ T . In this work we are interested in collective

3 Formally we should use different symbols for the mass parameter appearing
in (1) and full self-energy before renormalisation on one hand, and the physical
mass and finite part of ReΠ R on the other. However, the former do not appear
anywhere in the following calculation.

4 We refer to any pole of a propagator that fulfils (7) as quasiparticle, may it be
a screened one-particle state or a collective excitation, and regardless of its spin.
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