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Perturbative quantum gravity in the framework of the Schwinger-Keldysh formalism is applied to
compute lowest-order corrections to expansion of the Universe described in terms of the spatially flat
Friedman-Lemaitre-Robertson-Walker solution. The classical metric is approximated by a third degree
polynomial perturbation around the Minkowski metric. It is shown that quantum contribution to the
classical expansion, though extremely small, damps, i.e. slows down, the expansion (phenomenon of
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1. Introduction

The aim of our work is to explicitly show the appearance of
quantum generated damping, i.e. slowing down, of the present (ac-
celerating) expansion of the Universe (phenomenon of quantum
friction). In principle, quantum corrections to classical gravitational
field can be perturbatively calculated in a number of ways. First
of all, it is possible to directly derive quantum (one-loop) cor-
rections to classical gravitational field from the graviton vacuum
polarization (self-energy), in analogy to the case of the Coulomb
potential in QED (see, for example, Berestetskii et al. [1]), the
so-called Uehling potential. Such a type of calculations has been
already performed for the Schwarzschild solution (Duff [7]), as
well as for the spatially flat Friedman-Lemaitre-Robertson-Walker
(FLRW) metric (Broda [5]). Another approach refers to the energy-
momentum tensor, and it has been applied to the Newton po-
tential (see, for example, Bjerrum-Bohr et al. [3], and references
therein), to the Reissner-Nordstrom and the Kerr-Newman solu-
tions (see Donoghue et al. [6]), as well as to the Schwarzschild and
the Kerr metrics (see Bjerrum-Bohr et al. [2]). Yet another approach
uses the Schwinger-Keldysh (SK) formalism to the case of the
Newton potential (see, for example, Park and Woodard [9]). It is
argued that only the SK formalism is adequate for time-dependent
potentials, hence in particular, in the context of cosmology (see, for
example, Weinberg [10], and references therein). Because we aim
to perturbatively calculate corrections to the spatially flat FLRW
metric, we should use the SK formalism, as that is exactly the case
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(time-dependence of gravitational field) the SK approach has been
devised for.

The corrections we calculate are a quantum response to the
spatially flat FLRW solution which is described by a small pertur-
bation around the Minkowski metric. For definiteness, we confine
ourselves to the classical perturbation given by a third degree poly-
nomial. The final result is expressed in terms of the present time
quantum correction qg to the classical deceleration parameter qg.
On the premises assumed, it appears that qg is positive, though
obviously, it is extremely small.

2. Quantum damping
Our starting point is a general spatially flat FLRW metric

ds? = gy dxt dx” = —dt* + a®(t)dx?, p,v=0,1,2,3, (1)

with the cosmological scale factor a(t). To satisfy the condition of
weakness of the perturbative gravitational field hj,, near our ref-
erence time t =ty (where tg could be the age of the Universe—the
present moment) in the expansion

guv(X¥) =Ny + hpy (%), (2)

the metric should be normalized in such a way that it is exactly
Minkowskian for t = tg, i.e.

a*(t)=1+h(t),  h(tg) =0. 3)

(Let us note the analogy to the Newton potential (~ 1/r), where
the “reference radius” is in spatial infinity, i.e. ro = 4+00.) Then, in
the block diagonal form,

0370-2693/© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by

SCOAP3.


http://dx.doi.org/10.1016/j.physletb.2014.03.048
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
mailto:bobroda@uni.lodz.pl
http://dx.doi.org/10.1016/j.physletb.2014.03.048
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.03.048&domain=pdf

B. Broda / Physics Letters B 732 (2014) 182-185 183

0 0 .
h,w(t,x):<0 Sijh(t)>’ i,j=1,2,3. (4)

To obtain quantum corrections to the classical gravitational field
hcv(x), we shall use the one-loop effective field equation derived
by Park and Woodard [9],

t
2
Q — K 4 / 3,/
DIYEThG, (6,%) = 15D /dt /d X O(At — Ar)
0
x [In(—p?Ax*) = 1]hg, (', X)), (5)

where At =t —t/, Ar=|x —X|, Ax?2 =—(At)? + (Ar)?, and the
mass scale p is coming from the UV renormalization procedure
(see Ford and Woodard [8]). Here x? = 16w Gy, where Gy is the
Newton gravitational constant. The operator D (the Lichnerowicz
operator in the flat background) is of the form

DHVEO _ %(n/xvngaaz —gHYVReT  phveyo
_ n//-(QnU)Uaz _;’_23(/1}7”)@30))’

and for the minimally coupled massless scalar field

1
DHY@O _ [THV 0o 1 §nM(QHU)U (6)

with
T = phvo? — ghyY.
For conformally coupled fields we have D instead of D, where
DHVeo — _117/xv1-1@0 + lnu(ano)v_
9 3
Since the metric depends only on time, we can explicitly perform

the spatial integration with respect to &' in (5), obtaining the inte-
gral kernel (time propagator)

At
K(At) E47T/Clrrz{ln[ﬂ2((At)2 —r*)] -1}
0
= %”(Arf [1n(4M2At2) - g] (7

For the time-dependent metric of the form

(f (t) )
8ijh(t) )’

the action of the operators D, D and D is given by

f© _ (0
D( 5,~,~h(t))_< —(sijc‘,%h(t))’ (®)
f®) 0 \_ [0 0
D( 0 aijh(r)>_<0 ?&;ﬂh(t))’ ©
and
= f®) 0 —
D( 0 3,‘jh(f)>_07 (10)

respectively. There are no mixing of diagonal and non-diagonal
terms, and the empty blocks mean expressions which can be non-
zero, but they are inessential in our further analysis. Thus, (5) as-
sumes the simple form

d2
—h%(t) =
12 ®

K

2 8
307273 dt®

(K*h) (), (11)

where the integral kernel K is given by (7), and the convolution “x”
is standardly defined by

t t

KxF)(t) = / K(t —t')F(t")dt' = / K(t')F(t —t')dt’. (12)
0 0

One should note that due to the diagonal form of (4) and (8)-(10),

no non-diagonal terms of the metric enter (11).

Since the upper limit of integration in (12) depends on t, the
derivative of the convolution with respect to t is expressed by

dn(K F(t—(dnl( F)t)
w *F)(t) = w * (

n d(n—k) d(k—])

+IX; KO FO. (13)
k=

Using symmetry between K and F, Eq. (12), it is possible to dis-
tribute differentiation in (13) in several different ways. For prac-
tical purposes, further analysis, the most convenient form of the
eighth derivative is the “symmetric” one, i.e.

d® d4 d4

— (K« hO)(t) = [ =5 K» ——h" ) (t

dtg( )© (dt4 dtt >()

4
d@—h dk+3)
+’2;[ A KO h o
k=

dé-h g3
+ 2@ ©

piry K(t)i|. (14)

To prevent the appearance of the mass scale w, as well as “clas-
sical” divergences in the convolution, which could possibly come
from singularities in the kernel (time propagator) K, we assume
the following third degree polynomial form of the classical met-
ric

h(t) =hg+hit +hyt? + h373. (15)

Henceforth, for simplicity, instead of t we use the dimensionless
unit of time, T =t/tp.

The well-defined form of Eq. (16) proofs that (15) has been
properly selected. In fact, our choice is unique. First of all, let
us observe that the UV renormalized equation of motion (11) is
well-defined, at least by classical standards. This means that it
may happen for some hC(r) that Eq. (11) is not integrable for
the kernel (7), but non-integrabilities may appear also in standard
classical field theory, e.g. self-energy of a point particle in classi-
cal electrodynamics. Hence, in our calculations, possible infinities
are considered as “classical”. Their presence depends on the form
of h€, and it could be interpreted, as usually in classical field the-
ory, as inapplicability of the approach in such a type of problem.
Therefore, following that point of view, we should avoid contribu-
tions from

k

d
—K@®)| ,

” fork > 2,
dt t=0

because they generate singularities in Eq. (14), due to the singular
form of the kernel.

Another issue concerns the mass scale p present in (7), which
results from renormalization procedure. There are the two pos-
sibilities. One can choose some “natural” mass scale w, or one
can confine oneself to p-independent cases. The second possibil-
ity, if available, is preferable because it gives unambiguous results.
For example, let us consider quantum corrections to black-hole
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