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It is shown that a symmetric massless bosonic higher-spin field can be described by a traceless ten-
sor field with reduced (transverse) gauge invariance. The Hamiltonian analysis of the transverse gauge
invariant higher-spin models is used to control a number of degrees of freedom.
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1. Introduction

It was shown recently in [1,2] that a free massless spin two
field (i.e., linearized gravity) can be consistently described by a
traceless rank-2 tensor field with transverse gauge symmetry that
corresponds to linearized volume-preserving diffeomorphisms. We
extend this result to massless fields of arbitrary spin by showing
that a spin-s symmetric massless field can be described by a rank-s
traceless symmetric tensor. This formulation is in some sense op-
posite to the approach developed in [3–5] where a massless field
is described by a traceful tensor. Recall that the standard Frons-
dal’s formulation of a spin-s massless field operates with a rank-s
double traceless tensor [6]. For recent reviews on higher-spin (HS)
gauge theories see [7].

Although, like in the case of gravity, the obtained model is a
gauge fixed version of the original Fronsdal model [6] the equiva-
lence is not completely trivial. Actually, the standard counting of
degrees of freedom is that each gauge parameter in the gauge
transformations with first order derivatives kills two degrees of
freedom [9]. Therefore one can expect that the invariance under
reduced gauge symmetry may be not sufficient to compensate all
extra degrees of freedom. As we show this is not the case. The rea-
son is that the remaining gauge symmetry parameters satisfy the
differential transversality conditions ∂νξνμ2...μs−1 = 0.
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Generally, as explained in this Letter, a partial gauge fixing at
the Lagrangian level can give rise to a model which, if treated inde-
pendently of the original gauge model, may differ from the latter.
In particular, the Hamiltonian interpretation of the gauge fixed La-
grangian model may differ from that of the original model. This
can happen in the case where the gauges and constraints on gauge
parameters are differential. For example, as shown in Section 5,
this does happen in electrodynamics in the temporary gauge. Since
the transversality condition on the gauge parameter is also of this
type, a more careful analysis of the counting of the number of de-
grees of freedom in the model under consideration is needed. The
Hamiltonian analysis of Section 5 shows that the transverse gauge
invariant HS model has as many degrees of freedom as the original
Fronsdal model in the topologically trivial situation.

Note, that the original Lagrangian and field/gauge transforma-
tions content for a massless field of an arbitrary spin were derived
by Fronsdal in [6] by taking the zero rest mass limit m2 → 0 in the
Lagrangian of Singh and Hagen for a massive HS field of [8]. To the
best of our knowledge, it has not been analyzed in the literature
what is a minimal field content appropriate for the description a
massless HS field. The proposed formulation operates in terms of
an irreducible Lorentz tensor field, thus being minimal. It is equiv-
alent to the Fronsdal’s one in the topologically trivial situation but
may differ otherwise.

Also let us note that since the minimal formulation has a re-
laxed gauge symmetry compared to that of the Fronsdal’s formu-
lation, it may in principle have more freedom at the interaction
level, i.e., all interactions which can be introduced for the Frons-
dal’s theory are automatically recovered in its gauge fixed version.
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However, as the gauge symmetry is weaker in the proposed formu-
lation, some new types of interactions can in principle be expected.
Note that the recovery of usual gravitational interactions in the
case of spin-2 was shown in the model of [2] with the diffeomor-
phism symmetry of Einstein theory relaxed to volume preserving
diffeomorphisms.

The layout of the rest of the Letter is as follows. In Section 2 we
recall the standard description of massive and massless fields of ar-
bitrary spin. In Section 3, transverse and Weyl invariant Lagrangian
is constructed and a generating action is given. The equivalence
of transverse and Weyl invariant Lagrangian to the Fronsdal’s La-
grangian is checked in Section 4. Hamiltonian analysis and exam-
ples are given in Section 5.

2. Free massless higher-spin fields

A spin-s bosonic totally symmetric massive field in Minkowski
space can be described on shell [10] by a totally symmetric tensor
field ϕμ1...μs

1 that satisfies the conditions(
� + m2)ϕμ1...μs = 0, ∂νϕνμ2...μs = 0, ϕν

νμ3...μs = 0. (2.1)

These form the complete set of local Poincaré-invariant conditions
on ϕμ1...μs . In the massless case m2 = 0 a gauge invariance with
an on-shell traceless rank-(s − 1) tensor gauge parameter reduces
further the number of physical degrees of freedom.

As pointed out by Fierz and Pauli in [11], for (2.1) to be deriv-
able from a Lagrangian a set of auxiliary fields has to be added for
s > 1 (in the case of spin two considered by Fierz and Pauli this
is a scalar auxiliary field ϕ , which together with a traceless ϕμ1μ2

forms a traceful field φμ1μ2 = ϕμ1μ2 +ημ1μ2ϕ). Auxiliary fields are
zero on shell, thus carrying no physical degrees of freedom. For
totally symmetric massive fields of integer spins, the Lagrangian
formulation with a minimal set of auxiliary fields was worked out
by Singh and Hagen in [8]. For a spin-s field they introduced a set
of auxiliary fields, which consists of symmetric traceless tensors of
ranks s − 2, s − 3, . . . ,0. An elegant gauge invariant (Stueckelberg)
formulation was proposed by Zinoviev in [12]. (For alternative ap-
proaches to massive fields see also [13–15] and references therein.)

The Lagrangian of a spin-s massless field can be obtained [6] in
the limit m2 → 0. The auxiliary fields of ranks from 0 to (s − 3)

decouple while the residual rank-(s − 2) traceless auxiliary field
ϕμ1...μs−2 and the physical rank-s traceless field ϕμ1...μs form the
symmetric field φμ1...μs = ϕμ1...μs + η(μ1μ2ϕμ3...μs−2) that satisfies
the double tracelessness condition

ημ1μ2ημ3μ4φμ1...μs = 0, (2.2)

which makes sense for s � 4. The resulting Lagrangian possesses
gauge invariance with a traceless rank-(s − 1) gauge parameter
ξμ1...μs−1 ,

δφμ1...μs = s∂(μ1ξμ2...μs), ξν
νμ3...μs−1 = 0. (2.3)

In the spin two case of linearized gravity, the gauge law (2.3) cor-
responds to linearized diffeomorphisms.

Let us write down a most general bilinear action and La-
grangian (modulo total derivatives) of a double traceless field with
at most two derivatives as

L= (−)s
∑

α=a,b,c, f ,g

Lα, S =
∫

ddxL, (2.4)

1 Greek indices μ,ν,λ,ρ = 0, . . . ,d − 1 are vector indices of d-dimensional

Lorentz algebra o(d − 1,1). ∂μ ≡ ∂
∂xμ , � ≡ ∂ν∂ν and indices are raised and low-

ered by mostly minus invariant tensor ημν of o(d − 1,1). A group of indices to be
symmetrized is denoted by placing them in brackets or, shortly, by the same letter.
For example, ∂μφμ ≡ ∂(μ1 φμ2) ≡ 1

2 (∂μ1 φμ2 + ∂μ2 φμ1 ).

where

La = a

2
∂νφμ1...μs ∂

νφμ1...μs ,

Lb = −bs(s − 1)

4
∂νφρ

ρμ3...μs ∂
νφλ

λμ3...μs ,

Lc = − cs

2
∂νφνμ2...μs ∂ρφρμ2...μs ,

L f = f s(s − 1)

2
∂νφρ

ρμ3...μs ∂λφ
λνμ3...μs ,

Lg = − gs(s − 1)(s − 2)

8
∂νφρ

ρνμ4...μs ∂λφσ
σλμ4...μs (2.5)

with arbitrary coefficients a, b, c, f , g . For L to describe a spin-s
field, the coefficient a has to be nonzero (so, we set a = 1).

The variation of (2.4) is

δL=
(

Gμ1...μs − s(s − 1)

2(Υ − 2)
η(μ1μ2 Gρ

ρμ3...μs)

)
δφμ1...μs , (2.6)

where Υ = d + 2s − 4 and

Gμ1...μs = �φμ(s) − b
s(s − 1)

2
ημμ�φλ

λμ(s−2) − cs∂μ∂νφνμ(s−1)

+ f
s(s − 1)

2

(
ημμ∂ν∂λφνλμ(s−2) + ∂μ∂μφλ

λμ(s−2)

)
− g

s(s − 1)(s − 2)

4
ημμ∂μ∂νφλ

λνμ(s−3). (2.7)

The requirement that the action is invariant under (2.3) fixes the
coefficients a = b = c = f = g [16].

3. Transverse and Weyl invariant massless higher-spin fields

Let us consider a weaker condition on the action imposed by
the reduced gauge symmetry (2.3) with the transverse gauge pa-
rameter ξμ1...μs−1

δφμ1...μs = s∂(μ1ξμ2...μs), ∂νξνμ2...μs−1 = 0,

ξν
νμ3...μs−1 = 0. (3.1)

The invariance of action (2.4) under (3.1) fixes only the ratio
a/c = 1 while the rest of the coefficients remains free. This am-
biguity can be used to look for another symmetry to kill extra
degrees of freedom. Taking into account the double tracelessness
condition (2.2), a use of rank-(s − 2) symmetric traceless gauge pa-
rameter ζμ1...μs−2 is a natural option

δφμ1...μs = s(s − 1)

2
η(μ1μ2ζμ3...μs), ζ ν

νμ3...μs−2 = 0. (3.2)

The requirement for (2.4) to be invariant under the additional
(Weyl) symmetry (3.2) fixes the rest of the coefficients

b = Υ + 2

Υ 2
, f = 2

Υ
, g = −2(Υ − 4)

Υ 2
. (3.3)

Note that, not too surprisingly, the resulting Lagrangian (2.4)
can be obtained from the Fronsdal’s Lagrangian (i.e., that with a =
b = c = f = g = 1) via the substitution

φ̃μ1...μs = φμ1...μs − 1

Υ

s(s − 1)

2
η(μ1μ2φ

ν
νμ3...μs),

φ̃ν
νμ3...μs = 0. (3.4)

There is a generating action Sgen that gives rise both to the
Fronsdal and to the Weyl invariant actions in particular gauges.
Sgen results from the Fronsdal action by introducing a traceless
Stueckelberg field χμ1...μs−2 of rank-(s − 2) via the substitution

φμ1...μs → φμ1...μs + s(s − 1)

2
η(μ1μ2χμ3...μs), (3.5)
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