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Hawking radiation of linear dilaton black holes
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Abstract

We compute exactly the semi-classical radiation spectrum for a class of non-asymptotically flat charged dilaton black holes, the so-called linear
dilaton black holes. In the high frequency regime, the temperature for these black holes generically agrees with the surface gravity result. In the
special case where the black hole is massless, we show that, although the surface gravity remains finite, there is no radiation, in agreement with
the fact that massless objects cannot radiate.
© 2007 Elsevier B.V. All rights reserved.
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Quantum field theory in curved spacetime predicts new phe-
nomena such as particle emission by a black hole [1]. This is
due to the fact that the vacuum for a quantum field near the
horizon is different from the observer’s vacuum at spatial in-
finity. A distant observer thus receives from a black hole a
steady flux of particles exhibiting, in the high frequency regime,
a black body spectrum with a temperature proportional to the
surface gravity [2]. Although Hawking’s original derivation
of this black hole evaporation dealt with realistic collapsing
black holes, Unruh [3] showed that the same results are ob-
tained when the collapse is replaced by appropriate boundary
conditions on the horizon of an eternal black hole. In the semi-
classical approximation, the black hole radiation spectrum may
be evaluated by computing the Bogoliubov coefficients relating
the two vacua. An equivalent procedure is to compute the re-
flection and absorption coefficients of a wave by the black hole.
Usually, the wave equation cannot be solved exactly, and one
must resort to match solutions in an overlap region between the
near-horizon and asymptotic regions [4,5]. In the special case
of the (2 + 1)-dimensional BTZ black hole [6], an exact solu-
tion of the wave equation is available, which allows for an exact
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computation of the radiation spectrum, leading to the Hawking
temperature [7–9].

In this Letter, we discuss another case of black holes also
allowing for an exact semi-classical computation of their ra-
diation spectrum, that of linear dilaton black hole solutions to
Einstein–Maxwell dilaton (EMD) theory in four dimensions.
Linear dilaton black holes are a special case of the more general
class of non-asymptotically flat black hole solutions to EMD
[10,11], which we first briefly present. We discuss the evapora-
tion of these non-asymptotically flat black holes and show that
they either collapse to a naked singularity in a finite time, or
evaporate in an infinite time. We then specialize to linear dila-
ton black holes, and outline the analytical computation of their
radiation spectrum. For massive black holes, this computation
leads, in the high frequency regime, to the same temperature
which is obtained from the surface gravity. However in the case
of massless extreme black holes, we find that, although the sur-
face gravity remains finite, there is no radiation, in agreement
with the fact that a massless object cannot radiate.

EMD is defined by the following action

(1)S = 1

16π

∫
dx4 √−g

[
R − 2∂μφ∂μφ − e−2αφFμνF

μν
]
,

where Fμν is the electromagnetic field, and φ is the dilatonic
field, with coupling constant α. This theory admits static spher-
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ically symmetric solutions representing black holes. Among
these black hole solutions there are asymptotically flat ones [12,
13] as well as non-asymptotically flat configurations [10,11]. In
the present work, we are interested in the non-asymptotically
flat black hole solutions

(2)ds2 = rγ (r − b)

r
γ+1
0

dt2 − r
γ+1
0

rγ (r − b)

{
dr2 + r(r − b)dΩ2},

(3)F =
√

1 + γ

2

ν

r0
dr ∧ dt, e2αφ = ν2

(
r

r0

)1−γ

with

(4)γ = 1 − α2

1 + α2
.

The constants b and r0 are related to the mass and to the electric
charge of the black hole through

(5)M = (1 − γ )b/4, Q =
√

1 + γ

2

r0

ν
.

The solutions (2), (3) interpolate between the Schwarzschild
solution for γ = −1 (α2 → ∞) and the Bertotti–Robinson so-
lution for γ = +1 (α2 = 0). For γ = 0 (α2 = 1) the dilaton φ

is asymptotically linear in the ‘tortoise’ coordinate ln(r − b),
hence the term “linear dilaton black hole” for the correspond-
ing solution [14]. For all γ < 1, the horizon at r = b hides the
singularity at r = 0 if b > 0, while in the extreme black hole
case b = 0 the horizon coincides with the singularity. This is a
curious case, with vanishing mass but a finite electric charge.
For −1 < γ < 0 (α2 > 1) the central singularity is timelike
and clearly naked [11]. On the other hand, for 0 � γ < 1
(0 < α2 � 1), the central singularity is null and marginally
trapped [15], so that signals coming from the centre never reach
external observers. Thus in this case, extreme black holes can
be still considered as black holes indeed.

The statistical Hawking temperature of the black holes (2),
computed as usual by dividing the surface gravity by 2π is
given by

(6)TH = 1

4π

bγ

r
1+γ

0

.

It is finite for all γ if b �= 0. For b = 0 and −1 < γ < 0 (naked
singularity), the temperature is infinite, while for b = 0 and 0 <

γ < 1 (extreme black hole), the temperature vanishes.
The case b = γ = 0 is intriguing. Although this an extreme

black hole, the situation is different from that of asymptotically
flat extreme black holes. The near-horizon Euclidean extreme
Reissner–Nordström geometry is cylindrical, rather than con-
ical, so that its statistical temperature is arbitrary, contrary to
the zero value derived from surface gravity [16]. In the present
case the two-dimensional Euclidean continuation of the metric
(2) with γ = 0 clearly has a conical singularity at r = b for all
values of b, including b = 0, leading for this particular extreme
black hole to the finite temperature TH = 1/4πr0, in agreement
with the value (6). However this result is questionable. A black
hole with pointlike horizon and zero mass clearly cannot radi-
ate, so one should rather expect its temperature to be zero. We
will return to this question presently.

As black holes (2) radiate, they loose mass according to Ste-
fan’s law

(7)
dM

dt
= −σAhT

4
H ,

where σ is Stefan’s constant, and Ah = 4πr
1+γ

0 b1−γ is the
horizon area. Assuming that only electrically neutral quanta are
radiated, (7) implies that the horizon area decreases according
to

(8)
db

dt
= − 4σ

(4π)3(1 − γ )
r
−3(1+γ )

0 b1+3γ ,

which is solved by

b(t) = r0

(
γ c

1 − γ

t − t0

r3
0

)−1/3γ

(γ �= 0),

(9)b(t) = r0 exp

(
− c

3

t − t0

r3
0

)
(γ = 0),

where c = 3σ/16π3, and t0 is an integration constant. The
outcome depends on the sign of γ . For γ < 0, the Hawking
temperature increases with decreasing mass and the black hole
collapses to a naked singularity (or evaporates away altogether
in the Schwarzschild case γ = −1) in a finite time according to
b ∼ (t0 − t)1/3|γ |. On the other hand, for γ � 0, the Hawking
temperature decreases (or is constant for γ = 0) with decreas-
ing mass, and the black hole evaporates in an infinite time,
reaching the extreme black hole state b = 0 only asymptoti-
cally.

We now proceed to a more precise evaluation of the temper-
ature of non-asymptotically flat black holes from the study of
wave scattering in these spacetimes. The wave equation

(10)∇2φ = 0

does not generically allow for an exact solution in the space-
times (2). However, it can be solved analytically [14] in the
case of linear dilaton black holes with γ = 0 and b �= 0, with
the metric

(11)ds2 = r − b

r0
dt2 − r0

r − b

{
dr2 + r(r − b)dΩ2}.

Considering the harmonic eigenmodes

(12)φ(x) = ψ(r, t)Ylm(θ,ϕ), ψ(r, t) = R(r)e−iωt ,

we obtain the following radial equation:

(13)∂r

(
r(r − b)∂rR

) +
(

ω̄2 r

r − b
− l(l + 1)

)
R = 0

(ω̄2 ≡ ω2r2
0 ). Putting

(14)y = b − r

b
, R = yiω̄f,

reduces (13) to the equation

(15)

y(1 − y)∂2
yf + (

1 + 2iω̄ − 2(1 + iω̄)y
)
∂yf

+ (
ω̄2 − iω̄ − λ̄2 − 1/4

)
f = 0,
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