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The rules of soft-collinear effective theory can be used naively to write hard scattering cross-sections as
convolutions of separate hard, jet, and soft functions. One condition required to guarantee the validity of
such a factorization is the infrared safety of these functions in perturbation theory. Using e*e~ angularity
distributions as an example, we propose and illustrate an intuitive method to test this infrared safety at
one loop. We look for regions of integration in the sum of Feynman diagrams contributing to the jet and

soft functions where the integrals become infrared divergent. Our analysis is independent of an explicit

PACS: infrared regulator, clarifies how to distinguish infrared and ultraviolet singularities in pure dimensional
12.38.Bx regularization, and demonstrates the necessity of taking zero-bins into account to obtain infrared-safe jet
12.39.5t functions.
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1. Introduction

Factorization restores predictive power to calculations in Quan-
tum Chromodynamics (QCD) which cannot be carried out exactly
due to the contributions of nonperturbative effects. By separating
perturbatively-calculable and nonperturbative contributions to ob-
servables in QCD and relating the nonperturbative contributions to
different observables to each other, we gain the ability to make
real predictions.

Proving factorization rigorously is a technically challenging un-
dertaking, which traditionally has been formulated in full QCD
[1,2]. More recently, many formal elements of these factorization
proofs, such as power counting, gauge invariance, the organiza-
tion of soft gluons into eikonal Wilson lines, and their decoupling
from collinear modes, have been organized in the framework of
soft-collinear effective theory (SCET) [3-6]. These generic proper-
ties of the effective theory allow one to write at least nominally a
formula “factorized” into collinear (jet) and soft functions for an ar-
bitrary hard scattering cross-section in which strongly-interacting
light-like particles participate [7]. Examples are the factorization
of a large class of two-jet event shape distributions in eTe~ an-
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nihilations to light quark jets [8-10], jet mass distributions for
eTe™ to top quark jets [11], or arbitrary jet cross-sections in pp
collisions independently of the choice of actual jet algorithm or
observable [12]. While the formalism of SCET leads directly to ex-
pressing these observables as convolutions of separate hard, jet,
and soft functions, blind use of this procedure without consider-
ing further specific properties of each chosen observable can hide
whether factorization truly holds in a particular case or not.

An ideal set of observables for which to examine factorizabil-
ity is the set of angularities 7, [13], which are two-jet e*e™ event
shapes dependent on a tunable parameter a controlling how sen-
sitive the event shape is to radiation along the jet axes or at
wider angles. Varying a between 0 and 1 interpolates between
the thrust [14,15] and jet broadening [16] event shapes, but a can
take any value —oo < a < 2 and give an infrared-safe observable in
QCD. Angularities are known to be factorizable, however, only for
a <1 [13]. For events eTe~ — X, the angularity of a final state X is

1
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where in the first form E; is the energy of particle i and 6; is
the angle between its momentum and the thrust axis of X. In the
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second form, piL is the momentum of particle i transverse to the
thrust axis, and #»; is its rapidity with respect to the direction of
the thrust axis. We assume all final-state particles are massless.

In a separate publication, using SCET, we calculate the angu-
larity jet and soft functions to next-to-leading order in the strong
coupling «g, resum large logarithms using renormalization group
evolution, and model the nonperturbative soft function in a way
that avoids renormalon ambiguities [17].

In this Letter, using angularity distributions as an example, we
describe a simple, intuitive method for testing the validity of a
factorization theorem deduced from the simple rules of SCET. We
begin by naively presuming the factorizability of a given observ-
able and then attempt to calculate perturbatively the one-loop jet
and soft functions. If the factorization holds, each of these func-
tions should be infrared-safe. If they are not, we learn immediately
that the factorization breaks down.

Perturbative infrared-safety of jet and soft functions is not, of
course, by itself sufficient to guarantee validity of the proposed
factorization theorem. The size of power corrections must also be
taken into account. The methods we describe in this Letter address
only the former issue, not the latter. (Power corrections for angu-
larity distributions and their implications for factorizability were
studied in [10,13,18].) However, our method is a quick and direct
way to narrow down the class of observables for which a “generic”
factorization deduced from SCET (e.g. [12]) could actually be valid.

Our analysis also sheds light on some issues related to infrared
divergences in effective theory loop integrals. Finding a tractable
regulator in SCET that suitably controls all infrared divergences has
been very challenging (see, e.g., [19,20]). Care is also required to
define the effective theory such that it avoids double-counting mo-
mentum regions and infrared divergences of full theory diagrams.
The procedure of zero-bin subtraction has been proposed to elimi-
nate such double-counting [21].

We will address each of these issues without explicit calcula-
tion of the jet and soft loop integrals or use of an explicit infrared
regulator. Instead we just examine the regions of integration sur-
viving in the sum over all relevant diagrams. We will work in pure
dimensional regularization, and learn how to identify 1/¢ poles as
infrared or ultraviolet in origin, clarifying the contribution made by
scaleless integrals which are formally zero. We will thus conclude
that the analysis is independent of the choice of any explicit IR
regulator. In the process, we demonstrate the crucial role of zero-
bin subtractions in obtaining physically-consistent, infrared-safe jet
functions in angularity distributions for all a < 1. The ideas and
methods illustrated through our discussion of angularity distribu-
tions are more generally applicable to other observables as well.

2. Angularity distributions in SCET

The factorization theorem for the angularity distributions do/
dt, takes the form,

1d = =
——G=H(Q;u)/dt§dr&‘drg8(ra—r§—rg‘—ras)
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where oy is the total ete™ — g Born cross-section, H is a hard
function given in the effective theory by the square of a match-
ing coefficient dependent only on short-distance effects, Ji'" are
jet functions dependent on the partonic branching and evolution
of each of the two back-to-back final-state jets, and S, is a soft
function dependent on the low energy radiation from the jets and
the color exchange between them. All the functions depend on
the factorization scale u, with this dependence cancelling in the
full cross-section. The factorization theorem Eq. (2) for angularity

distributions has been proved in full QCD [13] and in SCET [10,
18], for a < 1, where this condition was derived from the size of
power corrections induced by replacing the thrust axis implicit in
Eq. (1) with the collinear jet axis n [10,13]. Our attempt to calcu-
late perturbatively the jet and soft functions in Eq. (2) will provide
a complementary way to deduce this condition and an intuitive
explanation of the absence of infrared divergences in the jet and
soft functions for a < 1 and their appearance for a > 1.

Collinear and soft modes in SCET are distinguished by the scal-
ing of the momenta of the particles they describe. The light-cone
components p = (n- p,n-p,py1) of collinear modes, where n,n
are light-cone vectors in the +z directions, scale as Q (A%, 1, 1) or
Q (1, A2, 1), and soft modes as Q (A%, A2, A2). Q is the hard energy
scale in the process being considered (here, the center-of-mass en-
ergy in ete~ collisions), and A is a small ratio of energy scales,
here A = ,/Aqcp/Q. Collinear momenta p. are split into a “label”
piece p. containing the order Q and Q A momenta, and a “residu-
al” piece k. all of whose components are order Q A2. A redefinition
of the collinear fields through multiplication by soft Wilson lines
decouples soft and collinear modes in the SCET Lagrangian to lead-
ing order in A [6].

The soft function S, in Eq. (2) is defined by
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and the jet functions J™" by
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The traces are over colors, the light-cone momenta are defined
It=n.land k~ =7 -k, and the subscripts +Q on the jet fields
in Eq. (4) specify that they create jets with total label momenta
Qn/2 and Qn/2 [5]. The soft Wilson line Y, in the soft function
is the path-ordered exponential of soft gluons,

Yn(z):Pexp|:ig/dsn-As(ns+z)i|, (5)

0

and similarly for Y;, with the bar denoting the anti-fundamental
representation. The fields x, 7 in the jet function are the product
of collinear Wilson lines and quarks, x, = W,Isn, where
o
Wn(z):Pexp|:ig/dsﬁ-An(ﬁ5+z):|, (6)
0

and similarly for W5. The operator 7, acts on final states |X) ac-
cording to

N 1 .

talX) = — > |p[e” 1170 X), (7)
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and is constructed from the energy-momentum tensor T, [22],

and the operators f;““ in Eqgs. (3) and (4) are constructed by
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