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We propose a stable first-order relativistic dissipative hydrodynamic equation in the particle frame
(Eckart frame) for the first time. The equation to be proposed was in fact previously derived by the
authors and a collaborator from the relativistic Boltzmann equation. We demonstrate that the equilibrium
state is stable with respect to the time evolution described by our hydrodynamic equation in the particle
frame. Our equation may be a proper starting point for constructing second-order causal relativistic
hydrodynamics, to replace Eckart’s particle-flow theory.

© 2008 Elsevier B.V. All rights reserved.

Relativistic hydrodynamics (RHD) is a useful tool for analyzing
slow and long wavelength behavior of relativistic many-particle
systems in terms of static and dynamic thermodynamic proper-
ties. In fact, RHD is widely used in astrophysics [1] and the phe-
nomenology of relativistic heavy ion collisions [2]. Since works
demonstrating the success of perfect hydrodynamics in describing
the phenomenology of the Relativistic Heavy Ion Collider (RHIC)
at BNL [2–4], we are witnessing a growing interest in RHD for
dissipative systems [5–8]. Indeed, there have been many works at-
tempting to show how small can be the transport coefficients of
strongly-interacting systems composed of hadrons or quarks and
gluons, with many of these employing the so-called AdS/CFT cor-
respondence hypothesis [9]. It should be noticed, however, that the
theory of RHD for dissipative systems is not clearly established, al-
though there have been many fundamental studies since Eckart’s
pioneering work [10].

We identify the following three fundamental problems regard-
ing relativistic hydrodynamic equations (RHDEs) for dissipative flu-
ids [11]: (a) ambiguities in the definition of the fluid flow [5,7,10,
12–14]; (b) the unphysical instability of the equilibrium state in the
theory of the so-called first-order equations, in particular in the
Eckart frame [15], defined below; (c) the lack of causality in the
first-order equations [14,16–18]. The present Letter is concerned
with the first two problems. The unphysical instability of the equi-
librium state may be attributable to the lack of causality, and
the Israel–Stewart equations with second-order time-derivative are
presently being examined in connection to this problem [5–7,18].
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In fact, the Israel–Stewart second-order formalism restores the in-
stability of the equilibrium state in the Eckart equation [15]. How-
ever, we emphasize that the first two problems and the third one
have different origins, and the first two must be resolved before
the third is addressed. Note that the causality problem also exists
in non-relativistic cases and is in essence a problem of how to in-
corporate the space–time scales shorter than those corresponding
to the mean-free path, beyond those in the usual hydrodynamic
regime. We also remark that the proper form of Israel–Stewart-
type equations has not yet been definitely determined [5,7].

Let us represent the flow velocity by uμ , with uμuμ =
gμνuμuν = 1 (gμν = diag(+1,−1,−1,−1)). In the relativistic the-
ory, the rest frame of the fluid and the flow velocity uμ cannot
be uniquely defined when there exist viscosity and heat conduc-
tion. In the phenomenological theories [10,12], the ambiguity of
the flow velocity uμ is resolved by placing constraints on the
dissipative part of the energy–momentum tensor, δT μν , and the
particle current, δNμ . Landau and Lifshitz defined uμ such that
there is no dissipative energy density, energy flow nor particle
density; i.e., we have the constraints δT μνuν = 0 (referred to as
ET) and uμδNμ = 0 (EN). This frame is called the energy frame.
Contrastingly, Eckart chose the particle frame, in which there is
no dissipative contribution to the particle current; i.e., we have
δNμ = 0 (PN), together with uμuνδT μν = 0 (PT): These conditions
imply that there is no dissipative contribution to the energy den-
sity in this frame. However, it should be noted that the seemingly
plausible constraint PT on δT μν is problematic, as shown in [11]
and explained below.

Recently, Tsumura, Kunihiro (the present authors) and Ohnishi
(abbreviated as TKO) [11] derived generic covariant hydrodynamic
equations for a viscous fluid through a reduction of the dynamics
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described by the relativistic Boltzmann equation in a systematic
manner, with no heuristic arguments, on the basis of the so-called
renormalization group (RG) method [19–21]. This was done by in-
troducing the macroscopic frame vector aμ that defines the macro-
scopic Lorenz frame, in which the slow dynamics are described.
The generic equation derived by TKO can produce a relativistic dis-
sipative hydrodynamic equation in any frame with the appropriate
choice of aμ; the resulting equation in the energy frame coincides
with that of Landau and Lifshitz [12], while that in the particle
frame is similar to, but slightly different from, the Eckart equation.
Interestingly, the TKO equation in the particle frame does not sat-
isfy the constraints PT on δT μν but, instead, satisfies δT μ

μ = 0,
which we call PT’, together with PN. It should be noted that the
new constraints, PT’, are identical to a matching condition postu-
lated by Marle and Stewart (MS) in the derivation of the RHD from
the Boltzmann equation with use of Grad’s moment theory [22].
We call the constraints PT’, together with PN, the Grad–Marle–
Stewart (GMS) constraints. In [11], TKO proved that the simultane-
ous constraints PT and PN cannot be compatible with the under-
lying Boltzmann equation if the hydrodynamic equation describes
the slow, long wavelength limit of the solutions of the Boltzmann
equation. This is interesting in connection to problem (b), i.e., the
fact that the solutions of the Eckart equation around the thermal
equilibrium are unstable [15], while the Landau theory is stable.

An immediate question is whether the solutions of the new
equations in the particle frame are stable around the thermal equi-
librium. In fact, the hydrodynamic equations of MS and TKO in
the particle frame are of different forms, although both satisfy the
constraints PT’ and PN. In the present Letter, we examine the sta-
bility problem for the new equations in the particle frame. Because
second-order equations, such as the Israel–Stewart equations, are
usually constructed in the particle frame, as an extension of the
Eckart equation, finding a stable first-order equation in the parti-
cle frame is of fundamental significance. As the RG method has
been employed to construct the slow dynamics of various systems
through the explicit construction of the slow, stable manifold of
the dynamics, we conjecture that the hydrodynamic equation ob-
tained as the slow, long wavelength limit of the Boltzmann equa-
tion on the basis of the RG method will provide a description in
which the thermal equilibrium state is stable. We demonstrate that
this is indeed the case by performing a linear stability analysis us-
ing the EOS and the transport coefficients for a rarefied gas. By
contrast, we find that the MS equation, like the Eckart equation, is
unstable. Hence, for the first time, a stable RHDE is obtained in the
particle frame. We believe that this will provide a sound starting
point for the construction of the proper second-order equations.

The energy–momentum tensor for our equation in the particle
frame reads

T μν = εuμuν − p�μν + λuμ∇ν T + λuν∇μT

+ ζ
(
3uμuν − �μν

)[−(3γ − 4)−2∇ · u
]

+ η
(∇μuν + ∇νuμ − 2/3�μν∇ · u

)
, (1)

while the particle current is given by Nμ = nuμ , with �μν ≡
gμν − uμuν and ∇μ ≡ �μν∂ν . Here T , μ, ε , p, n and γ are
the temperature, the chemical potential, the internal energy, the
pressure, the particle density and the ratio of the specific heats,
respectively, and ζ , λ and η denote the bulk viscosity, the heat
conductivity and the shear viscosity, respectively. The MS equa-
tions are obtained from the above equations through the replace-
ments −ζ(3γ − 4)−2∇ · u → +ζ(3γ − 4)−1∇ · u and λ∇μT →
λ(∇μT − T Duμ), where D ≡ uν∂ν . One can easily check that both
equations satisfy the GMS constraints. Nevertheless, we find the
following differences between them: (A) the thermal forces in the
MS equations contain the time-like derivative of the flow veloc-

ity Duμ , while those in our equations involve only the space-like
derivative ∇μ , and (B) the sign of the thermodynamic force ow-
ing to the bulk viscosity in our equation is the same as that in the
Landau equation and opposite that in the MS equation. We can
trace the two characteristic features of our theory back to the sim-
ple ansatz that only the spatial inhomogeneity, over distances of
the order of the mean free path, is the origin of the dissipation. It
should be noted that the same ansatz for the non-relativistic case
leads naturally to the Navier–Stokes equation, as shown in [21],
and hence our framework can be interpreted as the most natural
covariantization of the non-relativistic case.

The thermal equilibrium state is given by uμ(x) = (1,0,0,0) ≡
uμ

0 , T (x) = T0 and μ(x) = μ0, with T0 and μ0 being constant. This
is a trivial solution to the equations. Let us investigate the lin-
ear stability of the equilibrium solution. Writing T (x) = T0 + δT (x),
μ(x) = μ0 + δμ(x) and uμ(x) = uμ

0 + δuμ(x), we examine the time
evolution of the deviations in the linear approximation using the
evolution equation given by ∂μT μν = 0 and ∂μNμ = 0. Here we
note that the independent variables are the five quantities δT (x),
δμ(x) and δui(x) (i = 1,2,3), because δu0(x) = 0, due to the con-
straint uμ(x)uμ(x) = 1.

In terms of the Fourier components Φ̃α(k) ≡ t(δũ1(k), δũ2(k),

δũ3(k), δ T̃ (k), δμ̃(k)), defined through Φα(x) = ∫ d4k
(2π)4 Φ̃α(k)e−ik·x ,

the linearized hydrodynamic equation reduces to the algebraic
equation

∑5
β=1 MαβΦ̃β = 0, with

Mαβ ≡

⎛
⎜⎜⎜⎜⎜⎝

L1 0 0 0 0

0 L1 0 0 0

0 0 L1 − L2(k3)2 iL3k3 iL4k3

0 0 −iL5k3 L6 L7

0 0 −iL8k3 L9 L10

⎞
⎟⎟⎟⎟⎟⎠

, (2)

where we have set kμ = (k0,0,0,k3) without loss of general-
ity. The first and second components of Φ̃α describe the trans-
verse mode, while the third component the longitudinal one. Here
Li=1–10 are given by L1 ≡ (ε + p)(−ik0) + η|k|2, L2 ≡ −η/3 − ζP ,
L3 ≡ ∂ p/∂T − λ(−ik0), L4 ≡ ∂ p/∂μ, L5 ≡ −(ε + p) + 3ζP (−ik0)

L6 ≡ ∂ε/∂T (−ik0) + λ|k|2, L7 ≡ ∂ε/∂μ(−ik0), L8 ≡ −n, L9 ≡
∂n/∂T (−ik0) and L10 ≡ ∂n/∂μ(−ik0), with ζP ≡ ζ(3γ − 4)−2 be-
ing the effective bulk viscosity in the particle frame. In the above,
the quantities, ε , p, n, γ , ζ , λ, η, ∂ε/∂T , ∂ε/∂μ, ∂ p/∂T , ∂ p/∂μ,
∂n/∂T and ∂n/∂μ take their equilibrium values, with T = T0 and
μ = μ0.

The existence condition of a solution reads det M = 0, which
reduces to

L2
1

[(
L1 − |k|2 L2

)
(L6 L10 − L7 L9) − |k|2 L5(L3 L10 − L4 L9)

− |k|2 L8(L4 L6 − L3 L7)
] = 0. (3)

This equation gives the dispersion relation k0 = k0(|k|) for the hy-
drodynamic modes, and the stability condition for the equilibrium
state reads Im k0 � 0, ∀|k|.

We see the dispersion relation for the transverse mode is given
by L1 = 0, whose solution is k0 = −iη|k|2/(ε + p). Thus, we find
that the transverse mode is stable.

Here we again stress that the equation we study does not con-
tain a term proportional to Duμ in the thermal force for the
heat flow. What would happen if such a term were present in
the thermal forces, as in the case of the MS and the Eckart the-
ories? In this case, the corresponding equation becomes L1 =
(ε + p)(−ik0)− T λ(−ik0)2 +η|k|2 = 0, which possesses a root with
a positive imaginary part, and hence an unstable transverse mode
appears. We emphasize that this instability is inevitable if the heat
flow term contains Duμ [8].
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