Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

On Born's deformed reciprocal complex gravitational theory and noncommutative gravity

Carlos Castro

Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314, USA

Article history: Received 13 August 2008 Received in revised form 24 August 2008 Accepted 27 August 2008 Available online 4 September 2008 Editor: M. Cvetič	Born's reciprocal relativity in flat spacetimes is based on the principle of a maximal speed limit (speed of light) and a maximal proper force (which is also compatible with a maximal and minimal length duality) and where coordinates and momenta are unified on a single footing. We extend Born's theory to the case of curved spacetimes and construct a <i>deformed</i> Born reciprocal general relativity theory in curved spacetimes (without the need to introduce star products) as a local gauge theory of the <i>deformed</i> Quaplectic group that is given by the semi-direct product of $U(1, 3)$ with the <i>deformed</i> (noncommutative Weyl-Heisenberg group corresponding to <i>noncommutative</i> generators $[Z_a, Z_b] \neq 0$. The Hermitian metric is complex-valued with symmetric and nonsymmetric components and there are <i>two</i> different complex valued Hermitian Ricci tensors $\mathcal{R}_{\mu\nu}$, $\mathcal{S}_{\mu\nu}$. The deformed Born's reciprocal gravitational action linear in the Ricci scalars \mathcal{R} , \mathcal{S} with Torsion-squared terms and BF terms is presented. The plausible interpretation of $Z_{\mu} = E_{\mu}^{a} \overline{Z}_{a}$ as <i>noncommuting p</i> -brane background complex spacetime coordinates is discussed in the conclusion, where E_{μ}^{a} is the complex vielbein associated with the Hermitian metric $G_{\mu\nu} = g_{(\mu\nu)} + ig_{[\mu\nu]} = E_{\mu}^{a} \overline{E}_{\nu}^{b} \eta_{ab}$. This could be one of the underlying reasons why string-theory involves gravity. © 2008 Elsevier B.V. All rights reserved
---	--

Born's reciprocal ("dual") relativity [1] was proposed long ago based on the idea that coordinates and momenta should be unified on the same footing, and consequently, if there is a limiting speed (temporal derivative of the position coordinates) in Nature there should be a maximal force as well, since force is the temporal derivative of the momentum. A *curved* phase space case scenario has been analyzed by Brandt [2] within the context of the Finsler geometry of the 8D tangent bundle of spacetime where there is a limiting value to the proper acceleration and such that generalized 8D gravitational equations reduce to ordinary Einstein–Riemannian gravitational equations in the *infinite* acceleration limit. Other relevant work on the principle of maximal acceleration can be found in [3]. For a recent monograph on Finsler geometry see Vacaru [4].

Born's reciprocal "duality" principle is nothing but a manifestation of the large/small tension duality principle reminiscent of the *T*-duality symmetry in string theory; i.e., namely, a small/large radius duality, a winding modes/Kaluza–Klein modes duality symmetry in string compactifications and the Ultraviolet/Infrared entanglement in noncommutative field theories. Hence, Born's duality principle in exchanging coordinates for momenta could be the underlying physical reason behind *T*-duality in string theory. The generalized velocity and acceleration boosts (rotations) transformations of the 8D Phase space, where X, T, E, P are all boosted (rotated) into each-other, were given by [5] based on the group U(1, 3) and which is the Born version of the Lorentz group SO(1, 3). It was found later on [6] that Planck scale Areas are Invariant under pure acceleration boosts which may be relevant to string theory.

Invariant actions for a point-particle in reciprocal Relativity involving Casimir group invariant quantities can be found in [7]. Casimir invariant field equations; unitary irreducible representations based on Mackey's theory of induced representations; the relativistic harmonic oscillator and coherent states can be found in [5]. The granular cellular structure of spacetime, the Schrödinger–Robertson inequality, multi-mode squeezed states, a "noncommutative" relativistic phase space geometry, in which position and momentum are interchangeable and frame-dependent was studied by [8]. Born's reciprocity principle in atomic physics and galactic motion based on (1/r) + (b/p) potentials was studied recently by [9] with little effect on atomic physics but with relevant effects on galactic rotation without invoking dark matter.

In this Letter we construct a local gauge theory of the *de-formed* (noncommutative) Quaplectic group given by the semidirect product of U(1,3) with the deformed (noncommutative) Weyl-Heisenberg group. The U(1,3) arises as the group that leaves invariant the interval in 8D phase $dx_{\mu} dx^{\mu} + dp_{\mu} dp^{\mu}$ space, as well as invariant the symplectic two-form $\omega = \omega_{\mu\nu} dx^{\mu} \wedge dp^{\nu}$, simultaneously. The novel result in this Letter is the *modification* of the Weyl-Heisenberg algebra, not unlike Yang's noncommutative phase space algebra [10].

E-mail address: czarlosromanov@yahoo.com.

^{0370-2693/\$ –} see front matter $\ \textcircled{0}$ 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.physletb.2008.08.066

The deformed Weyl-Heisenberg algebra involves the generators

$$Z_a = \frac{1}{\sqrt{2}} \left(\frac{X_a}{\lambda_l} - i \frac{P_a}{\lambda_p} \right),$$

$$\bar{Z}_a = \frac{1}{\sqrt{2}} \left(\frac{X_a}{\lambda_l} + i \frac{P_a}{\lambda_p} \right), \quad a = 1, 2, 3, 4.$$
(1)

Notice that we must *not* confuse the *generators* X_a , P_a (associated with the fiber coordinates of the internal space of the fiber bundle) with the ordinary base spacetime coordinates and momenta x_{μ} , p_{μ} . The gauge theory is constructed in the fiber bundle over the base manifold which is a 4*D* curved spacetime with *commuting* coordinates $x^{\mu} = x^0$, x^1 , x^2 , x^3 . The (deformed) Quaplectic group acts as the automorphism group along the internal fiber coordinates. Therefore we must *not* confuse the *deformed* complex gravity constructed here with the noncommutative gravity work in the literature [11] where the spacetime coordinates x^{μ} are not commuting.

The four fundamental length, momentum, temporal and energy scales are respectively

$$\lambda_l = \sqrt{\frac{\hbar c}{b}}, \qquad \lambda_p = \sqrt{\frac{\hbar b}{c}}, \qquad \lambda_t = \sqrt{\frac{\hbar}{bc}}, \qquad \lambda_e = \sqrt{\hbar bc},$$
(2)

where *b* is the *maximal* proper force associated with the Born's reciprocal relativity theory. In the natural units $\hbar = c = b = 1$ all four scales become *unity*. The gravitational coupling is given by

$$G = \frac{c^4}{\mathcal{F}_{\text{max}}} = \frac{c^4}{b} \tag{3}$$

and the four scales coincide then with the Planck length, momentum, time and energy, respectively and we can verify that

$$\mathcal{F}_{\max} = m_P \frac{c^2}{L_P} \sim M_{\text{Universe}} \frac{c^2}{R_H}.$$
 (4)

It was proposed in [6] that a certain large (Hubble)/small (Planck) scale *duality* was operating in this Born's reciprocal relativity theory reminiscent of the *T*-duality in string theory compactifications. The Hermitian generators Z_{ab} , Z_a , \bar{Z}_a , I of the U(1, 3) algebra and the *deformed* Weyl–Heisenberg algebra obey the relations

$$(Z_{ab})^{\dagger} = Z_{ab}, \qquad (Z_a)^{\dagger} = \bar{Z}_a, \qquad I^{\dagger} = I, \quad a, b = 1, 2, 3, 4.$$
 (5)

The standard Quaplectic group [5] is given by the semi-direct product of the U(1,3) group and the unmodified Weyl–Heisenberg H(1,3) group: $Q(1,3) \equiv U(1,3) \otimes_s H(1,3)$ and is defined in terms of the generators Z_{ab} , Z_a , \overline{Z}_a , I with a, b = 1, 2, 3, 4.

A careful analysis reveals that the complex generators Z_a , \overline{Z}_a (with Hermitian *and* anti-Hermitian pieces) of the *deformed* Weyl-Heisenberg algebra can be defined in terms of the Hermitian U(1, 4) algebra generators Z_{AB} , where $A, B = 1, 2, 3, 4, 5, a, b = 1, 2, 3, 4, \eta_{AB} = \text{diag}(+, -, -, -, -)$, as follows:

$$Z_{a} = (-i)^{1/2} (Z_{a5} - iZ_{5a}),$$

$$\bar{Z}_{a} = (i)^{1/2} (Z_{a5} + iZ_{5a}), \qquad Z_{55} = \frac{\mathcal{I}}{2},$$
(6)

the Hermitian generators are $Z_{AB} \equiv \mathcal{E}_A^B$ and $Z_{BA} \equiv \mathcal{E}_B^A$; notice that the position of the indices is very relevant because $Z_{AB} \neq Z_{BA}$. The commutators are

$$\begin{bmatrix} \mathcal{E}_a^b, \mathcal{E}_c^d \end{bmatrix} = -i\delta_c^b \mathcal{E}_a^d + i\delta_a^d \mathcal{E}_c^b, \begin{bmatrix} \mathcal{E}_c^d, \mathcal{E}_a^5 \end{bmatrix} = -i\delta_a^d \mathcal{E}_c^5, \qquad [\mathcal{E}_c^d, \mathcal{E}_5^a] = i\delta_c^a \mathcal{E}_5^d$$
(7)

and $[\mathcal{E}_5^5, \mathcal{E}_5^a] = -i\delta_5^5 \mathcal{E}_5^a \cdots$ such that now $\mathcal{I}(= 2Z_{55})$ *no* longer commutes with Z_a, \overline{Z}_a . The generators Z_{ab} of the U(1,3) algebra can

be decomposed into the Lorentz-subalgebra generators L_{ab} and the "shear"-like generators M_{ab} as

$$Z_{ab} \equiv \frac{1}{2}(M_{ab} - iL_{ab}), \qquad L_{ab} = L_{[ab]} = i(Z_{ab} - Z_{ba}),$$

$$M_{ab} = M_{(ab)} = (Z_{ab} + Z_{ba}),$$
(8)

one can see that the "shear"-like generators M_{ab} are *Hermitian* and the Lorentz generators L_{ab} are *anti-Hermitian* with respect to the fiber internal space indices. The explicit commutation relations of the Hermitian generators Z_{ab} can be rewritten as

$$[L_{ab}, L_{cd}] = (\eta_{bc}L_{ad} - \eta_{ac}L_{bd} - \eta_{bd}L_{ac} + \eta_{ad}L_{bc}),$$
(9a)

$$[M_{ab}, M_{cd}] = -(\eta_{bc}L_{ad} + \eta_{ac}L_{bd} + \eta_{bd}L_{ac} + \eta_{ad}L_{bc}),$$
(9b)

$$[L_{ab}, M_{cd}] = (\eta_{bc}M_{ad} - \eta_{ac}M_{bd} + \eta_{bd}M_{ac} - \eta_{ad}M_{bc}).$$
(9c)

Defining $Z_{ab} = \frac{1}{2}(M_{ab} - iL_{ab})$, $Z_{cd} = \frac{1}{2}(M_{cd} - iL_{cd})$ after straightforward algebra it leads to the U(3, 1) commutators

$$[Z_{ab}, Z_{cd}] = -i(\eta_{bc} Z_{ad} - \eta_{ad} Z_{cb})$$
(9d)

as expected, and which requires that the commutators $[M, M] \sim L$ otherwise one would not obtain the U(3, 1) commutation relations (9d) nor the Jacobi identities will be satisfied.¹ The commutators of the (anti-Hermitian) Lorentz boosts generators L_{ab} with the X_c , P_c generators are

$$[L_{ab}, X_c] = (\eta_{bc} X_a - \eta_{ac} X_b),$$

$$[L_{ab}, P_c] = (\eta_{bc} P_a - \eta_{ac} P_b).$$
 (10a)

Since the Hermitian M_{ab} generators are the *reciprocal* boosts transformations which *exchange X* for *P*, in addition to boosting (rotating) those variables, one has in

$$\begin{bmatrix} M_{ab}, \frac{X_c}{\lambda_l} \end{bmatrix} = -\frac{i}{\lambda_p} (\eta_{bc} P_a + \eta_{ac} P_b),$$
$$\begin{bmatrix} M_{ab}, \frac{P_c}{\lambda_p} \end{bmatrix} = -\frac{i}{\lambda_l} (\eta_{bc} X_a + \eta_{ac} X_b),$$
(10b)

such that upon recurring to Eqs. (6), (7) and/or Eqs. (10) after low-ering indices it leads to 2

$$[Z_{ab}, Z_c] = -\frac{i}{2}\eta_{bc}Z_a + \frac{i}{2}\eta_{ac}Z_b - \frac{1}{2}\eta_{bc}\bar{Z}_a - \frac{1}{2}\eta_{ac}\bar{Z}_b,$$

$$[Z_{ab}, \bar{Z}_c] = -\frac{i}{2}\eta_{bc}\bar{Z}_a + \frac{i}{2}\eta_{ac}\bar{Z}_b + \frac{1}{2}\eta_{bc}Z_a + \frac{1}{2}\eta_{ac}Z_b.$$
 (10c)

In the noncommutative Yang's phase-space algebra case [10], associated with a noncommutative phase space involving noncommuting spacetime coordinates and momentum x^{μ} , p^{μ} , the generator \mathcal{N} which appears in the modified $[x^{\mu}, p^{\nu}] = i\hbar \eta^{\mu\nu} \mathcal{N}$ commutator is the *exchange* operator $x \leftrightarrow p$, $[p^{\mu}, \mathcal{N}] = i\hbar x^{\mu}/R_{H}^{2}$ and $[x^{\mu}, \mathcal{N}] = iL_{p}^{2}p^{\mu}/\hbar$. L_{p}, R_{H} are taken to be the minimal Planck and maximal Hubble length scales, respectively. The Hubble upper scale R_{H} corresponds to a *minimal* momentum \hbar/R_{H} , because by "duality" if there is a minimal length there should be a minimal momentum also.

Yang's [10] noncommutative phase space algebra is isomorphic to the conformal algebra $SO(4, 2) \sim SU(2, 2)$ after the correspondence $x^{\mu} \leftrightarrow L^{\mu 5}$, $p^{\mu} \leftrightarrow L^{\mu 6}$, and $\mathcal{N} \leftrightarrow L^{56}$. In the *deformed* Quaplectic algebra case, it is in addition to the \mathcal{I} generator, the M_{ab} generator which plays the role of the exchange operator of X

¹ This corrects a typo in [12].

² These commutators *differ* from those in [5] because he chose all generators X, P, M, L to be anti-Hermitian so there are no i terms in the commutators in the r.h.s. of Eq. (10b) and there are also sign changes.

Download English Version:

https://daneshyari.com/en/article/1853473

Download Persian Version:

https://daneshyari.com/article/1853473

Daneshyari.com