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We consider the existence of Taub–NUT solutions in third order Lovelock gravity with cosmological
constant, and obtain the general form of these solutions in eight dimensions. We find that, as in the
case of Gauss–Bonnet gravity and in contrast with the Taub–NUT solutions of Einstein gravity, the metric
function depends on the specific form of the base factors on which one constructs the circle fibration.
Thus, one may say that the independence of the NUT solutions on the geometry of the base space is not a
robust feature of all generally covariant theories of gravity and is peculiar to Einstein gravity. We find that
when Einstein gravity admits non-extremal NUT solutions with no curvature singularity at r = N , then
there exists a non-extremal NUT solution in third order Lovelock gravity. In 8-dimensional spacetime,
this happens when the metric of the base space is chosen to be CP

3. Indeed, third order Lovelock gravity
does not admit non-extreme NUT solutions with any other base space. This is another property which
is peculiar to Einstein gravity. We also find that the third order Lovelock gravity admits extremal NUT
solution when the base space is T 2 × T 2 × T 2 or S2 × T 2 × T 2. We have extended these observations
to two conjectures about the existence of NUT solutions in Lovelock gravity in any even-dimensional
spacetime.

© 2008 Elsevier B.V.

1. Introduction

The question as to why the Planck and electroweak scales differ by so many orders of magnitude remains mysterious. In recent
years, attempts have been made to address this hierarchy issue within the context of theories with extra spatial dimensions. In higher-
dimensional spacetimes even with the assumption of Einstein—that the left-hand side of the field equations is the most general symmetric
conserved tensor containing no more than two derivatives of the metric—the field equations need to be generalized. This generalization
has been done by Lovelock [1], and he found a second rank symmetric conserved tensor in d dimensions which contains upto second
order derivative of the metric. Other higher curvature gravities which have higher derivative terms of the metric, e.g., terms with quartic
derivatives, have serious problems with the presence of tachyons and ghosts as well as with perturbative unitarity, while the Lovelock
gravity is free of these problems [2].

Many authors have considered the possibility of higher curvature terms in the field equations and how their existence would modify
the predictions about the gravitating system. Here, we are interested in the properties of the black holes, and we want to know which
properties of the black holes are peculiar to Einstein gravity, and which are robust features of all generally covariant theories of gravity.
This fact provide a strong motivation for considering new exact solutions of Lovelock gravity. We show that some properties of NUT
solutions are peculiar to Einstein gravity and not robust feature of all generally covariant theories of gravity. Although the nonlinearity of
the field equations causes to have a few exact black hole solutions in Lovelock gravity, there are many papers on this subject [3–5]. In this
Letter we introduce Taub–NUT metrics in third order Lovelock gravity, and investigate which properties of these kinds of solutions will be
modified by considering higher curvature terms in the field equations.

The original four-dimensional solution [6] is only locally asymptotic flat. The spacetime has as a boundary at infinity a twisted S1

bundle over S2, instead of simply being S1 × S2. There are known extensions of the Taub–NUT solutions to the case when a cosmological
constant is present. In this case the asymptotic structure is only locally de Sitter (for positive cosmological constant) or anti-de Sitter
(for negative cosmological constant) and the solutions are referred to as Taub–NUT–(A)dS metrics. In general, the Killing vector that
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corresponds to the coordinate that parameterizes the fibre S1 can have a zero-dimensional fixed point set (called a NUT solution) or a
two-dimensional fixed point set (referred to as a ‘bolt’ solution). Generalizations to higher dimensions follow closely the four-dimensional
case [7–9]. Also, these kinds of solutions have been generalized in the presence of electromagnetic field and their thermodynamics have
been investigated [10,11]. It is therefore natural to suppose that the generalization of these solutions to the case of Lovelock gravity, which
is the low energy limit of supergravity, might provide us with a window on some interesting new corners of M-theory moduli space.

The outline of this Letter is as follows. We give a brief review of the field equations of third order Lovelock gravity in Section 2. In
Section 3, we obtain Taub–NUT solutions of third order Lovelock gravity in eight dimensions and then we check the conjectures given in
Ref. [4]. We finish this letter with some concluding remarks.

2. Field equations

The vacuum gravitational field equations of third order Lovelock gravity may be written as:

α0 gμν + α1G(1)
μν + α2G(2)

μν + α3G(3)
μν = 0, (1)

where αi ’s are Lovelock coefficients, G(1)
μν is just the Einstein tensor, and G(2)

μν and G(3)
μν are the second and third order Lovelock tensors

given as

G(2)
μν = 2

(
Rμσκτ Rν

σκτ − 2Rμρνσ Rρσ − 2Rμσ Rσ
ν + R Rμν

) − 1

2
L2 gμν, (2)
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μν = −3

(
4Rτρσκ Rσκλρ Rλ

ντμ − 8Rτρ
λσ Rσκ

τμRλ
νρκ + 2Rν

τσκ Rσκλρ Rλρ
τμ

− Rτρσκ Rσκτρ Rνμ + 8Rτ
νσρ Rσκ

τμRρ
κ + 8Rσ

ντκ Rτρ
σμRκ

ρ

+ 4Rν
τσκ Rσκμρ Rρ

τ − 4Rν
τσκ Rσκτρ Rρ

μ + 4Rτρσκ RσκτμRνρ + 2R Rν
κτρ Rτρκμ

+ 8Rτ
νμρ Rρ

σ Rσ
τ − 8Rσ

ντρ Rτ
σ Rρ

μ − 8Rτρ
σμRσ

τ Rνρ − 4R Rτ
νμρ Rρ

τ

+ 4Rτρ Rρτ Rνμ − 8Rτ
ν Rτρ Rρ

μ + 4R Rνρ Rρ
μ − R2 Rνμ

) − 1

2
L3 gμν. (3)

In Eqs. (2) and (3) L2 = Rμνγ δ Rμνγ δ − 4Rμν Rμν + R2 is the Gauss–Bonnet Lagrangian and

L3 = 2Rμνσκ Rσκρτ Rρτ
μν + 8Rμν

σρ Rσκ
ντ Rρτ

μκ + 24Rμνσκ Rσκνρ Rρ
μ

+ 3R Rμνσκ Rσκμν + 24Rμνσκ RσμRκν + 16Rμν Rνσ Rσ
μ − 12R Rμν Rμν + R3 (4)

is the third order Lovelock Lagrangian. Eq. (1) does not contain the derivative of the curvatures, and therefore the derivatives of the metric
higher than two do not appear. In order to have the contribution of all the above terms in the field equation, the dimension of the
spacetime should be equal or larger than seven. Here, for simplicity, we consider the NUT solutions of the dimensionally continued gravity
in eight dimensions. The dimensionally continued gravity in D dimensions is a special class of the Lovelock gravity, in which the Lovelock
coefficients are reduced to two by embedding the Lorentz group SO(D − 1,1) into a larger AdS group SO(D − 1,2) [12]. By choosing
suitable unit, the remaining two fundamental constants can be reduced to one fundamental constant l. Thus, the Lovelock coefficients αi ’s
can be written as

α0 = −21

l2
, α1 = 3, α2 = 3l2

20
, α3 = l4

120
.

3. Eight-dimensional solutions

In this section we study the eight-dimensional Taub–NUT solutions of third order Lovelock gravity. In constructing these metrics the
idea is to regard the Taub–NUT spacetime as a U (1) fibration over a 6-dimensional base space endowed with an Einstein–Kähler metric
dΩ2

B . Then the Euclidean section of the 8-dimensional Taub–NUT spacetime can be written as:

ds2 = F (r)(dτ + NA)2 + F −1(r)dr2 + (
r2 − N2)dΩ2

B , (5)

where τ is the coordinate on the fibre S1 and A has a curvature F = dA, which is proportional to some covariantly constant 2-form. Here
N is the NUT charge and F (r) is a function of r. The solution will describe a ‘NUT’ if the fixed point set of the U (1) isometry ∂/∂τ (i.e.
the points where F (r) = 0) is less than 6-dimensional and a ‘bolt’ if the fixed point set is 6-dimensional. Here, we consider only the cases
where all the factor spaces of B have zero or positive curvature. Thus, the base space B can be the 6-dimensional space CP

3, a product of
three 2-dimensional spaces (T 2 or S2), or the product of a 4-dimensional space CP

2 with a 2-dimensional one. The 1-forms and metrics
of S2, T 2, CP

2 and CP
3 are [13]

AS2 = 2 cos θi dφi, dΩ2
S2 = dθ2

i + sin2 θi dφ2
i , (6)

AT 2 = 2ηi dζi, dΩ2
T 2 = dη2

i + dζ 2
i , (7)

A
CP

2 = 6 sin2 θ2
(
dφ2 + sin2 θ1 dφ1

)
, (8)

dΩ2
CP

2 = 6
{

dθ2
2 + sin2 θ2 cos2 θ2

(
dφ2 + sin2 θ1 dφ1

)2 + sin2 θ2
(
dθ1

2 + sin2 θ1 cos2 θ1 dφ2
1

)}
(9)

A
CP

3 = 1

2

(
1

2

(
cos2 θ3 − sin2 θ3

)
dφ3 − cos2 θ3 cos θ1dφ1 − sin2 θ3 cos θ2 dφ2

)
,
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