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We check a commonly used approximation in which a baryon with a heavy quark is described as a heavy
quark–light diquark system. The heavy quark influences the diquark internal motion reducing the average
distance between the two light quarks. Besides, we show how the average distance between the heavy
quark and any of the light quarks, and that between the heavy quark and the center of mass of the light
diquark, are smaller than the distance between the two light quarks, which seems to contradict the heavy
quark–light diquark picture. This latter result is in agreement with expectations from QCD sum rules and
lattice QCD calculations. Our results also show that the diquark approximations produces larger masses
than the ones obtained in a full calculation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Heavy quark symmetry [1–6] (HQS) predicts that in baryons
with a heavy quark, and up to corrections in the inverse of the
heavy quark mass, the light degrees of freedom quantum numbers
are well defined, in particular the total spin of the light degrees of
freedom is well defined. This prediction has been taken in different
calculations as the basis for treating the light quark subsystem as
a diquark, and the baryon as a heavy quark–light diquark (HQLD)
system [7–16]. This HQS prediction does not imply though that the
orbital motion of the two light quarks is not affected by the pres-
ence of the heavy quark as it seems to be implicit in the HQLD ap-
proximation.1 Very recently the diquark structure of heavy baryons
have been analyzed in �c production in heavy ion collisions [17]
where its enhanced yield is seen as a signal for the existence of
light diquark correlations both in the quark gluon plasma and the
heavy baryon.

In Ref. [18], using a light-front constituent quark model and a
Gaussian ansatz for the wave function, the authors studied the de-
pendence of the Isgur–Wise function [4] on the baryon structure.
They found very different behaviors for a diquark-like configura-
tion (the heavy quark is far from the center of mass of the light
quarks) or a collinear-type configuration (the heavy quark is close
to the center of mass of the light quarks). Comparison of the re-
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1 Note however that although in the HQLD approximation the light diquark inter-
nal structure is not affected by the heavy quark, this structure is commonly taken
into account to build up the heavy quark–light diquark interaction.

sults with QCD sum rules [19] and lattice QCD calculations [20]
suggested a clear dominance of the collinear-type configurations.
This result seems to go against the HQLD approximation.

Here we plan to check the validity of the HQLD approximation,
that we formulate in next section, by looking at heavy baryons
masses and quark distributions inside baryons composed of a
heavy quark (b or c) and two light quarks. We shall compare the
predictions obtained within that approximation with the ones ob-
tained in a full calculation where the effect of the heavy quark on
the light diquark is not neglected. For that purpose we shall use
the nonrelativistic quark model and the full wave functions de-
scribed in Ref. [21]. In that reference we took advantage of HQS
constraints on the spin of the light degrees of freedom to solve
the full nonrelativistic three-body problem by means of a simple
variational ansatz. The scheme of Ref. [21] for the wave functions

Table 1
Summary of the quantum numbers of ground-state heavy baryons containing a sin-
gle heavy quark. I , and Sπ

l are the isospin, and the spin parity of the light degrees
of freedom and S , J P are the strangeness and the spin parity of the baryon. We
also give the quark content where l denotes a light quark of flavor u or d
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Table 2
Masses in MeV obtained with our full calculation in Ref. [21] and with the HQLD approximation (see text for details). In all cases we use the AL1 interquark potential of Refs.
[22,23]. We also show experimental masses (isospin average) and lattice estimates when the former are not known. Experimental masses have been taken from Refs. [25],
[26] (†) and [27] (§). Lattice estimates (‡) have been taken from Ref. [28]. Note in Ref. [26] what it is actually measured is the mass difference M�∗

c
− M�c

Baryon Full calcul. [21] HQLD approx. Exp. Baryon Full calcul. [21] HQLD approx. Exp.

�c 2295 2317 2286.48 ± 0.14 �b 5643 5663 5624 ± 9
�c 2469 2521 2453.6 ± 0.5 �b 5851 5897 5812§ ± 3
�∗

c 2548 2579 2518 ± 2 �∗
b 5882 5919 5833§ ± 3

�c 2474 2501 2469.5 ± 0.6 �b 5808 5837 5760‡ ± 70
�′

c 2578 2629 2577 ± 4 �′
b 5946 5993 5900‡ ± 70

�∗
c 2655 2686 2646 ± 1.4 �∗

b 5975 6015 5900‡ ± 70
�c 2681 2727 2697.5 ± 2.6 �b 6033 6081 5990‡ ± 70
�∗

c 2755 2783 2768.3† ± 3.2 �∗
b 6063 6104 6000‡ ± 70

Fig. 1. Definition of different coordinates used through this work. CM and CML stand
for the baryon center of mass and the light quark subsystem center of mass respec-
tively.

reproduced previous results for masses, charge radii. . . , obtained in
Ref. [22] by solving more involved Faddeev equations. The baryons
included in that and the present study appear in Table 1. We
restrict ourselves to ground-state heavy baryons with total spin
J = 1/2,3/2 for which we could assume a zero total orbital an-
gular momentum (L = 0).

2. Heavy quark–light diquark approach to a heavy baryon

The set of coordinates more adequate for a heavy quark–light
diquark description are the Jacobi coordinates (see Fig. 1)

�R = mq1�xq1 + mq2�xq2 + mh�xh

mq1 + mq2 + mh
,

�r12 = �xq1 − �xq2 , �rh = mq1�xq1 + mq2�xq2

mq1 + mq2

− �xh, (1)

where �xq1 , �xq2 and �xh represent the positions, with respect to a
certain reference frame, of the two light quarks and heavy quark
respectively, and similarly mq1 , mq2 and mh are their masses. The
Jacobian coordinates are the center of mass position �R , the relative
position between the two light quarks �r12, and the relative posi-
tion between the two light quark center of mass and the heavy
quark �rh .

In terms of these coordinates the three-body Hamiltonian can
be written as

H = −
�∇2 �R
2M̄

+ H int, M̄ = mq1 + mq2 + mh,

H int = M̄ + Hq1q2 + Hhq1q2 , (2)

where − �∇2 �R
2M̄

accounts for the total center of mass free motion.

Table 3
Absolute value square of the P projection coefficient defined in Eq. (8)

�c �c �∗
c �c �′

c �∗
c �c �∗

c

|P|2 0.971 0.943 0.957 0.949 0.926 0.932 0.935 0.961

�b �b �∗
b �b �′

b �∗
b �b �∗

b|P|2 0.949 0.946 0.951 0.924 0.921 0.922 0.935 0.946

Besides M̄ , the different terms in the internal Hamiltonian H int

are
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(3)

with �∇12 = ∂/∂�r12
, �∇h = ∂/∂�rh

and Vqq′ the interquark potential
that depends on relative distances and spins. Defining now

H0
hq1q2

= −1

2

(
1

mq1 + mq2

+ 1

mh

)
�∇2

h + Vq1h(�rh, spin)

+ Vq2h(�rh, spin) (4)

one could write

H int = M̄ + Hq1q2 + H0
hq1q2

+ (
Hhq1q2 − H0

hq1q2

)
. (5)

Hq1q2 is the Hamiltonian for the relative motion of the two light
quarks while H0

hq1q2
is the Hamiltonian for the relative motion of

the heavy quark with respect to a pointlike light diquark where the
two light quarks are located in their center of mass. Both Hamil-
tonians are coupled through the term (Hhq1q2 − H0

hq1q2
). This latter

term cannot be neglected altogether as the light diquark is not
pointlike.

Within the HQLD approximation one assumes that the light di-
quark internal structure is not disturbed by the presence of the
heavy quark. This means to neglect the influence of the term
(Hhq1q2 − H0

hq1q2
) in the evaluation of the diquark internal wave

function, which therefore will be determined by Hq1q2 alone. How-
ever, and since the diquark will have a finite size, the effect of
(Hhq1q2 − H0

hq1q2
) has to be taken into account to obtain the rh de-

pendence of the baryon wave function and its mass. Within this
approximation, we will take a baryon wave function given by

Ψ
B,HQLD

hq1q2
(r12, rh) = Φq1q2 (r12) · Fhq1q2 (rh), (6)

where Φq1q2 (r12) is the ground-state wave function for the Hamil-
tonian Hq1q2 and the given spin configuration. We will determine
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