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ARTICLE INFO ABSTRACT
Arfifle histOTy_i We review the present theoretical and empirical knowledge for «;, the fundamental
Available online 9 May 2016 coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics

(QCD). The dependence of o(Q?) on momentum transfer Q encodes the underlying
dynamics of hadron physics—from color confinement in the infrared domain to asymptotic
freedom at short distances. We review constraints on «s(Q?) at high Q2, as predicted
by perturbative QCD, and its analytic behavior at small Q2, based on models of
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Renormalization nonperturbative dynamics. In the introductory part of this review, we explain the
Infrared properties phenomenological meaning of the coupling, the reason for its running, and the challenges
Hadron physics facing a complete understanding of its analytic behavior in the infrared domain. In the

second, more technical, part of the review, we discuss the behavior of «(Q?) in the
high momentum transfer domain of QCD. We review how «; is defined, including its
renormalization scheme dependence, the definition of its renormalization scale, the utility
of effective charges, as well as “Commensurate Scale Relations” which connect the various
definitions of the QCD coupling without renormalization-scale ambiguity. We also report
recent significant measurements and advanced theoretical analyses which have led to
precise QCD predictions at high energy. As an example of an important optimization
procedure, we discuss the “Principle of Maximum Conformality”, which enhances QCD’s
predictive power by removing the dependence of the predictions for physical observables
on the choice of theoretical conventions such as the renormalization scheme. In the last
part of the review, we discuss the challenge of understanding the analytic behavior o (Q?)
in the low momentum transfer domain. We survey various theoretical models for the
nonperturbative strongly coupled regime, such as the light-front holographic approach to
QCD. This new framework predicts the form of the quark-confinement potential underlying
hadron spectroscopy and dynamics, and it gives a remarkable connection between the
perturbative QCD scale A and hadron masses. One can also identify a specific scale Qg
which demarcates the division between perturbative and nonperturbative QCD. We also
review other important methods for computing the QCD coupling, including lattice QCD,
the Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these
approaches and enumerating their conflicting predictions, we discuss the origin of these
discrepancies and how to remedy them. Our aim is not only to review the advances in this
difficult area, but also to suggest what could be an optimal definition of «;(Q?) in order to
bring better unity to the subject.
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