

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Effective QCD and transport description of dilepton and photon production in heavy-ion collisions and elementary processes

O. Linnyk^{a,*}, E.L. Bratkovskaya^b, W. Cassing^a

- ^a Institut für Theoretische Physik, Justus Liebig Universität Giessen, 35392 Giessen, Germany
- ^b Institut für Theoretische Physik, Goethe Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany

ARTICLE INFO

Article history: Available online 21 December 2015

Keywords: QCD Quasi-particle models Photons Dileptons Heavy-ion collisions

ABSTRACT

In this review we address the dynamics of relativistic heavy-ion reactions and in particular the information obtained from electromagnetic probes that stem from the partonic and hadronic phases. The out-of-equilibrium description of strongly interacting relativistic fields is based on the theory of Kadanoff and Baym. For the modeling of the partonic phase we introduce an effective dynamical quasiparticle model (DQPM) for QCD in equilibrium. In the DQPM, the widths and masses of the dynamical quasiparticles are controlled by transport coefficients that can be compared to the corresponding quantities from lattice OCD. The resulting off-shell transport approach is denoted by Parton-Hadron-String Dynamics (PHSD) and includes covariant dynamical transition rates for hadronization and keeps track of the hadronic interactions in the final phase. It is shown that the PHSD captures the bulk dynamics of heavy-ion collisions from lower SPS to LHC energies and thus provides a solid basis for the evaluation of the electromagnetic emissivity, which is calculated on the basis of the same dynamical parton propagators that are employed for the dynamical evolution of the partonic system. The production of direct photons in elementary processes and heavyion reactions is discussed and the present status of the photon v_2 "puzzle" – a large elliptic flow v_2 of the direct photons experimentally observed in heavy-ion collisions – is addressed for nucleus-nucleus reactions at RHIC and LHC energies. The role of hadronic and partonic sources for the photon spectra and the flow coefficients v_2 and v_3 is considered as well as the possibility to subtract the QGP signal from the experimental observables. Furthermore, the production of e^+e^- or $\mu^+\mu^-$ pairs in elementary processes and A + A reactions is addressed. The calculations within the PHSD from SIS to LHC energies show an increase of the low mass dilepton yield essentially due to the in-medium modification of the ρ -meson and at the lowest energy also due to a multiple regeneration of Δ -resonances. Furthermore, pronounced traces of the partonic degrees-of-freedom are found in the intermediate dilepton mass regime (1.2 GeV < M < 3 GeV) at relativistic energies, which will also shed light on the nature of the very early degrees-of-freedom in nucleus-nucleus collisions.

© 2015 Elsevier B.V. All rights reserved.

Contents

1.	Introduction	51
2.	Relativistic dynamics of many-body systems and off-shell transport	52

E-mail address: olena.linnyk@theo.physik.uni-giessen.de (O. Linnyk).

^{*} Corresponding author.

	2.1.	Two-point functions	53
	2.2.	The Dyson-Schwinger equation	54
	2.3.	Kadanoff–Baym equations	54
	2.4.	Spectral function	55
	2.5.	The equilibrium distribution.	55
	2.6.	Derivation of the off-shell relativistic transport theory	56
	2.7.	Test-particle representation and numerical solution.	59
3.	Dynan	nical quasiparticle model for hot QCD	60
	3.1.	Quasiparticle properties	60
	3.2.	Spectral functions	61
	3.3.	Thermodynamics of QCD	61
	3.4.	Partonic mean-field potentials from the DQPM	63
	3.5.	DQPM at finite quark chemical potential	63
4.	The PH	ISD approach	64
	4.1.	Hadronization	64
	4.2.	Initial conditions	65
	4.3.	System evolution	66
	4.4.	Transport coefficients of the QGP	67
	4.5.	Application to Au + Au or Pb + Pb collisions	71
5.	Impler	nentation of photon and dilepton production in transport approaches	76
	5.1.	Photon sources in relativistic heavy-ion collisions	76
	5.2.	Photon production by dynamical quasiparticles in the QGP	77
	5.3.	Thermal rates and the Landau-Migdal-Pomeranchuk effect	80
	5.4.	Bremsstrahlung $m + m \rightarrow m + m + \gamma$ beyond the soft-photon approximation	82
	5.5.	Binary meson + meson and meson + nucleon reactions	88
	5.6.	Dilepton sources	89
	5.7.	Vector-meson spectral functions	90
	5.8.	Off-shell propagation and the time-integration method	91
	5.9.	e^+e^- bremsstrahlung in $p+p$ and $p+n$ reactions	92
6.	Results	s on photon production in $p+A$ and $A+A$ collisions	93
	6.1.	Direct photon spectra from SPS to LHC energies	93
	6.2.	Elliptic flow of direct photons	
	6.3.	Triangular flow of direct photons	
7.	Results	s on dilepton production in heavy-ion collisions	104
	7.1.	SIS energies	
	7.2.	AGS energies	
	7.3.	SPS energies	
	7.4.	RHIC energies	109
	7.5.	LHC energies	111
8.		ary	
		wledgments	
	Refere	nces	112

1. Introduction

Present experiments at the Relativistic Heavy-Ion Collider (RHIC) or the Large Hadron Collider (LHC) have reached for short time scales the conditions met in the first micro-seconds in the evolution of the universe after the 'Big Bang'. The 'Big Bang' scenario implies that on these time scales the entire state has emerged from a partonic system of quarks, antiquarks and gluons – a quark–gluon plasma (QGP) – to color neutral hadronic matter consisting of interacting hadronic states (and resonances) in which the partonic degrees-of-freedom are confined. The nature of confinement and the dynamics of this phase transition is still an outstanding question of today's physics. Early concepts of the QGP were guided by the idea of a weakly interacting system of massless partons which might be described by perturbative QCD (pQCD). However, experimental observations at RHIC and LHC indicated that the new medium created in ultra-relativistic heavy-ion collisions is interacting more strongly than hadronic matter. It is presently widely accepted that this medium is an almost perfect liquid of partons as suggested experimentally from the strong radial expansion and the scaling of the elliptic flow $v_2(p_T)$ of mesons and baryons with the number of constituent quarks and antiquarks. While the last years have been devoted to explore the collective and transport properties of this partonic medium, the present focus lies on the electromagnetic emissivity of the new type of matter, i.e. its emission of *direct* photons or dilepton pairs. Since the system is initially far from equilibrium and no clear evidence has been achieved so far that an early equilibration at times of the order of 0.5–1.0 fm/c is achieved, microscopic studies based on non-equilibrium dynamics are mandatory.

Non-equilibrium many-body theory or transport theory has become a major topic of research in nuclear physics, in cosmological particle physics as well as condensed matter physics. The multidisciplinary aspect arises due to a common interest to understand the various relaxation phenomena of quantum dissipative systems. Important questions in nuclear

Download English Version:

https://daneshyari.com/en/article/1853830

Download Persian Version:

https://daneshyari.com/article/1853830

<u>Daneshyari.com</u>