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ARTICLE INFO ABSTRACT
Keywords: The Antiproton Decelerator (AD) facility of CERN began operation in 1999 to serve
Antiproton

experiments for studies of CPT invariance by precision laser and microwave spectroscopy
Anti A of antihydrogen (H) and antiprotonic helium (pHe™') atoms. The first 12 years of AD
ntiprotonic helium . = . . . " .

CPT-symmetry oPerathn saw cold H synthesged by overlapping clouds of posmons.(e ) “*.".d antiprotons
Antimatter gravity (p) confined in magnetic Penning traps. Cold H was also produced in collisions between
Collision experiments Rydberg positronium (Ps) atoms and p. Ground-state H was later trapped for up to ~1000 s
in a magnetic bottle trap, and microwave transitions excited between its hyperfine levels.
In the pHe™ atom, deep ultraviolet transitions were measured to a fractional precision of
(2.3-5) x 10~° by sub-Doppler two-photon laser spectroscopy. From this the antiproton-
to-electron mass ratio was determined as Mz/m. = 1836.1526736(23), which agrees
with the p value known to a similar precision. Microwave spectroscopy of pHe™ yielded
a measurement of the p magnetic moment with a precision of 0.3%. More recently, the
magnetic moment of a single p confined in a Penning trap was measured with a higher
precision, as iy = —2.792845(12)pnyq in nuclear magnetons. Other results reviewed
here include the first measurements of the energy loss (—dE /dx) of 1-100 keV p traversing
conductor and insulator targets; the cross sections of low-energy (<10 keV) p ionizing
atomic and molecular gas targets; and the cross sections of 5 MeV p annihilating on various
target foils via nuclear collisions. The biological effectiveness of p beams destroying cancer
cells was measured as a possible method for radiological therapy. New experiments under
preparation attempt to measure the gravitational acceleration of H or synthesize H'.
Several other future experiments will also be briefly described.
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1. Introduction

The Antiproton Decelerator (AD) facility of CERN [1,2] began operation in 1999 to carry out high-precision laser
spectroscopy of antihydrogen (H) and antiprotonic helium (pHe') atoms. It was envisaged that by comparing the
characteristic transition frequencies of these atoms with the corresponding ones for hydrogen (H) in the H case, or quantum
electrodynamics (QED) calculations in the pHe™ case at the highest possible precision, the consistency of CPT invariance
could be tested. This invariance is deeply engrained within the Standard Model of particle physics, and implies that
particles and their antiparticle counterparts should have exactly the same mass, and charges and magnetic moments
of the same values but opposite signs. Atoms should resonate at exactly the same frequency as “anti-atoms” made of
antiparticles.

Precision laser and microwave spectroscopy of atoms and ions of ordinary matter have been carried out for more than
50 years, and in recent years have achieved such a high level of sophistication that transition frequencies have routinely been
measured with an experimental precision of better than 10~ '>. This exceeds even the precision by which the international
definition of the second can be currently determined. Some experiments are sensitive to minute shifts in the frequencies
due to the effects of General Relativity. Progress on the anti-atom side is much more difficult due to the simple fact that
cold samples are so difficult to synthesize in large quantities. The constituent antiprotons (p) and positrons (e™) can only
be produced in very small quantities in laboratory nuclear reactions at MeV or GeV energy scales. These particles cannot be



Download English Version:

https://daneshyari.com/en/article/1853979

Download Persian Version:

https://daneshyari.com/article/1853979

Daneshyari.com


https://daneshyari.com/en/article/1853979
https://daneshyari.com/article/1853979
https://daneshyari.com

