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h i g h l i g h t s

• We have provided a general framework to find the extremal values of a weak measurement.
• We have derived the location of the extremal values in terms of preparation and postselection.
• We have devised a maximization strategy going beyond the limit of the Schrödinger–Robertson relation.
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a b s t r a c t

In a weak measurement, the average output ⟨o⟩ of a probe that
measures an observable Â of a quantum system undergoing both
a preparation in a state ρi and a postselection in a state Ef is,
to a good approximation, a function of the weak value Aw =

Tr[EfÂρi]/ Tr[Efρi], a complex number. For a fixed coupling λ, when
the overlap Tr[Efρi] is very small, Aw diverges, but ⟨o⟩ stays finite,
often tending to zero for symmetry reasons. This paper answers
the questions: what is the weak value that maximizes the output
for a fixed coupling? What is the coupling that maximizes the
output for a fixedweak value?We derive equations for the optimal
values of Aw and λ, and provide the solutions. The results are
independent of the dimensionality of the system, and they apply
to a probe having a Hilbert space of arbitrary dimension. Using the
Schrödinger–Robertson uncertainty relation, we demonstrate that,
in an important case, the amplification ⟨o⟩ cannot exceed the initial
uncertaintyσo in the observable ô, weprovide anupper limit for the
more general case, and a strategy to obtain ⟨o⟩ ≫ σo.
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1. Introduction

In 1988 [1], Aharonov et al. introduced the concept of postselected weak measurements, initiating
a prolific avenue of research. Recently, there have been several works considering the possibility
of using weak and intermediate strength interaction in order to reconstruct an unknown quantum
state [2–9] and to diminish the noise in a variable by preceding its measurement with the observation
of the conjugate variable [10]. Other works, instead, in line with the initial proposal of Aharonov
et al. [1], have focused on the amplification effect of weakmeasurement [11–15]. (However, the actual
advantage over techniques based on strong measurement has been questioned [16–19].) Indeed, the
provocative title of the original paper by Aharonov et al. was ‘‘How the result of a measurement of a
component of the spin of a spin-1/2 particle can turn out to be 100’’, meaning that the average output
of a detector which, in a strong measurement, would give p = ±λ/2 as outputs, can be amplified
to ⟨p⟩ ∼ 100λ if the measurement is weak and the system is suitably postselected. The weakness of
the measurement means that initially the uncertainty over the pointer variable is much larger than λ,
the distance between the peaks expected in the strong regime. This means that initially the pointer
may not be in the zero position, but it could read, e.g., p0 = 99λ or p0 = −101λ, etc. However,
if the detector were a classical object, these fluctuations would cancel out on the average. Instead,
as the detector obeys quantum mechanics as well, if it is prepared in a suitably quantum coherent
superposition of pointer states [20,21] and if the system is postselected appropriately, this cancellation
does not occur, possibly leading to a large output.

How large can the average output be? According to the simple formula of Ref. [1] there are no
bounds to it, but as it turns out, the formula breaks downwhen the output is largish. This has prompted
the need to provide a more reliable formula, working also in the regime where the measurement
strength is weak but the overlap between the preparation and the postselection is small [22–25].

For a spin 1/2, it is possible to work out an exact solution for an instantaneous interaction [20,21]
and more generally for a nondemolition interaction of finite duration [22]. This has allowed to study
the maximization of the output based on the exact expression in Ref. [22], and then in Refs. [26–28]
with varying degrees of generality. Kofman et al. [25] considered some particular cases of the
maximization for a detector with an infinite dimensional Hilbert space performing a canonical
von Neumann measurement, i.e. using a position variable q̂ to couple with the system and its
conjugate variable p̂ as the readout for themeasurement. Furthermore, Ref. [25] only considered pure
preparation and postselection, so that there may be, in principle, higher maxima or lower minima for
mixed preparation and postselection. During the completion of the present manuscript, a preprint
appeared [29] that treats the problem of themaximization of the output as well. While the variational
approach of Ref. [29] allows to include higher order corrections for a system of dimension d > 2, it
applies only when q has a continuous spectrum and the readout p is its conjugate variable, and the
procedure relies on a numerical approach. To the best ofmy knowledge, there is no systematic study of
the maximization of an arbitrary output variable ⟨o⟩ for higher-dimensional systems. The main result
of this paper is provided in Eqs. (25)–(27) and (30).

2. Background

2.1. Measurement model

As customary when treating weak measurements, it is supposed that a detector interacts with
the measured system through the Hamiltonian H = −λδ(t)q̂Â, i.e. the von Neumann model [30] of
measurement is assumed. In this model, the output variable is usually taken to be p̂, the conjugate
variable of q̂, i.e. [q̂, p̂] = i, with [, ] the commutator. Thus, q̂ is assumed to have a continuous
unbounded spectrum, so that it can be treated as a position operator. In the following, however, we
shall not make this assumption, and in this sense we are diverging from the von Neumann model.
Instead, we shall consider the output variable ô to be arbitrary. Thus, the detector could have a finite-
dimensional Hilbert space, for instance it could be a spin 1/2, with q̂ a spin component, etc.
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