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h i g h l i g h t s

• Scattering problem in complex or chaotic systems.
• Heidelberg approach to model the chaotic nature of the scattering center.
• A novel route to the nonlinear sigma model based on the characteristic function.
• Exact results for the distributions of off-diagonal scattering-matrix elements.
• Universal aspects of the scattering-matrix fluctuations.
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a b s t r a c t

Scattering is a ubiquitous phenomenon which is observed in a va-
riety of physical systems which span a wide range of length scales.
The scattering matrix is the key quantity which provides a com-
plete description of the scattering process. The universal features
of scattering in chaotic systems is most generally modeled by the
Heidelberg approach which introduces stochasticity to the scatter-
ing matrix at the level of the Hamiltonian describing the scattering
center. The statistics of the scatteringmatrix is obtained by averag-
ing over the ensemble of randomHamiltonians of appropriate sym-
metry. We derive exact results for the distributions of the real and
imaginary parts of the off-diagonal scattering matrix elements ap-
plicable to orthogonally-invariant and unitarily-invariant Hamilto-
nians, thereby solving a long standing problem.
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1. Introduction

Scattering is a truly fundamental issue in physics [1,2]. A major part of our information about
quantum systems stems from scattering experiments. Rutherford’s gold-foil experiment [3] is a classic
example which led us towards the understanding of the atomic structure. Even in modern times,
powerful particle accelerators rely on scattering experiments to probe deeper and deeper into the
structure of matter. Moreover, scattering plays a crucial role in classical wave systems as well and
one can often relate the relevant observables to the scattering parameters. Along with the atomic
nuclei [4–8], atoms [9–12] and molecules [13–15], some of the other important examples where
scattering phenomena have been of considerable interest are mesoscopic ballistic devices [16–27],
microwave cavities [28–43], irregular graphs [44,45], quantum graphs [46–48], elastomechanical
billiards [49–51], wireless communication [52–54] etc.

The scattering process can be completely described in terms of the scattering matrix (S matrix).
It relates the asymptotic initial and final Hilbert spaces spanned by a quantum system undergoing
the scattering process. In simple words, it relates the incoming and outgoing waves. In a quantum
mechanical context these are thewave functions, i.e. the probability amplitudes. However, in classical
systems, the waves are the displacement vectors in elastomechanical systems or the electromagnetic
field in microwave cavities. The flux conservation requirement constrains the S matrix to be unitary,
i.e., SSĎ = SĎS = 1. As a consequence of the complicated dependence on the parameters of the
incoming waves and the scattering center, scattering is quite often of chaotic nature. Accordingly
one needs a statistical description of the scattering phenomenon and hence of the S matrix, i.e., to
describe the S matrix and related observables in terms of correlations functions and distributions.
Two standard approaches in this direction are the semiclassical approach [55–58] and the stochastic
approach [59–62]. The former relies on representing the S-matrix elements in terms of a sum over
the classical periodic orbits, starting with the genuine microscopic Hamiltonian representing the
system. The latter, in contrast, relies on introducing stochasticity to the scattering matrix or to the
Hamiltonian describing the scattering center. Both of these have their advantages and drawbacks.
For instance, the semiclassical approach suffers the restriction caused by an exponential proliferation
of classical periodic unstable trajectories. It is further constrained by the formal condition h̄ → 0
which demands that the number of open channels be large and therefore does not cover all interesting
cases. The stochastic approach, on the other hand, gets restricted by the very nature of the stochastic
modeling. Moreover, in this case, one can expect only to explore the universal aspects, leaving aside
the system specific properties. The comparison between these two approaches has been discussed in
detail in [63].

As indicated above,within the stochastic approach, one can pursue one of the following two routes.
In the first one, the S matrix itself is regarded a stochastic quantity and is described by the Poisson
kernel. Its derivation is based on imposing minimal information content along with the necessary
conditions like unitarity, analyticity etc. This routewas pioneered byMello and coworkers and is often
referred to as the Mexico approach [61,62]. The second path relies on introducing the stochasticity at
the level of the Hamiltonian describing the scattering center. For this, one employs the randommatrix
universality conjecture andmodels the system Hamiltonian by one of the appropriate randommatrix
ensembles [64–66]. This path was laid by Weidenmüller and coworkers [59] and is referred to as
the Heidelberg approach. Even though these two stochastic approaches appear very different in their
formulation, they describe precisely the same quantity, the S matrix. Naturally, one would expect
that these two routes are equivalent. Indeed it was shown by Brouwer that the Poisson kernel can be
derived using theHeidelberg approach bymodeling the scattering-centerHamiltonian by a Lorentzian
(or Cauchy) ensemble of random matrices [67]. Since the universal properties depend only on the
invariance properties of the underlying Hamiltonian [64–66], his result established the equivalence
between the two approaches. Furthermore, very recently Fyodorov et al. have demonstrated this
equivalence for a broad class of unitary-invariant ensembles of randommatrices [68].

In their pioneering work Verbaarschot et al. [69] calculated the two-point energy correlation
functions by implementing the supersymmetry technique [70–73] within the Heidelberg approach.
Their result established the universality of the S-matrix fluctuation properties in chaotic scattering.
Further progress in characterizing the S-matrix fluctuations was made in [74,75] where the authors
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