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h i g h l i g h t s

• The separability of Quantum Dots is derived from that of the perturbed Kepler problem.
• Harmonic perturbation with 2:1 anisotropy is separable in parabolic coordinates.
• The system has a conserved Runge–Lenz type quantity.
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a b s t r a c t

The separability and Runge–Lenz-type dynamical symmetry of the
internal dynamics of certain two-electron QuantumDots, found by
Simonović et al. (2003), are traced back to that of the perturbed
Kepler problem. A large class of axially symmetric perturbing
potentials which allow for separation in parabolic coordinates can
easily be found. Apart from the 2:1 anisotropic harmonic trapping
potential considered in Simonović and Nazmitdinov (2013), they
include a constant electric field parallel to themagnetic field (Stark
effect), the ring-shapedHartmannpotential, etc. The harmonic case
is studied in detail.
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1. Introduction

A two-electronQuantumDot (QD) in a perpendicularmagnetic field, described by theHamiltonian,
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where the confining potential is that of an axially symmetric oscillator [1,2],
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may carry unexpected symmetries. Firstly, the system splits, consistently with Kohn’s theorem, into
center-of-mass and relative motion and the former system carries a Newton–Hooke type symmetry
[3,4]. Secondly, for the particular values of the frequency ratios
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ωz
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L

= 1, 2, (1.3)

whereωL is the Larmor frequency,1 the relativemotion becomes separable in suitable coordinates [1],
which hints at further symmetry. This paper is devoted to the study of the latter, and to generalizing
them to other axi-symmetric trapping potentials.

Our first step is to trace back the problem to those results found earlier for a particle without a
magnetic field, B = 0 [5,6]. Choosing the vector potential A =

1
2B(−y, x, 0) and introducing R =

(r1 + r2)/2 and r = r1 − r2, the system splits into center-of-mass and relative parts. Disregarding the
first, we focus our attention at the relative motion. Following [1], the relative Hamiltonian becomes,
after suitable re-definition,
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where M∗
= M/2 is the reduced mass and we used units where h̄ = 1. Now putting

r → R(t) r, R(t) =
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eB
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(1.5)

eliminates the vector potential altogether and the Schrödinger equation of relative motion,

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ψ = 0, goes over intoi∂t +
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axi-symmetric oscillator

ψ = 0, (1.6)

where we also assumed thatM∗
= 1.

The rotational trick (1.5) allowed us, hence, to convert the constant-magnetic-field problem into
that of the Kepler potential perturbed by an axially symmetric oscillator [5,6]. In what follows, we
only study the latter problem, since all results can be translated to the constant-magnetic context
by applying (1.5) backwards. Note that in the original QD problem the electrons repel and thus
a ∝ −e2 < 0; for completeness, we also consider here the attractive Kepler case a > 0. Our analysis
bears also strong similarities with that of ions in a Paul trap [6].

1 In the QD problem the Larmor frequency involves the reduced massM∗
= M/2, ωL = eB/2M∗ .
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