Separability and dynamical symmetry of Quantum Dots

CrossMark

P.-M. Zhang ${ }^{\text {a,* }}$, L.-P. Zou ${ }^{\text {a }}$, P.A. Horvathy ${ }^{\text {a,b }}$, G.W. Gibbons ${ }^{\text {c }}$
${ }^{\text {a }}$ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
${ }^{\mathrm{b}}$ Laboratoire de Mathématiques et de Physique Théorique, Tours University, France
${ }^{\text {c }}$ Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge, UK

H I G H L I G H T S

- The separability of Quantum Dots is derived from that of the perturbed Kepler problem.
- Harmonic perturbation with 2:1 anisotropy is separable in parabolic coordinates.
- The system has a conserved Runge-Lenz type quantity.

ARTICLE INFO

Article history:

Received 4 September 2013
Accepted 9 November 2013
Available online 14 November 2013

Keywords:

Quantum Dot
Separability
Dynamical symmetry
Perturbed Kepler problem
Anisotropic oscillator

Abstract

The separability and Runge-Lenz-type dynamical symmetry of the internal dynamics of certain two-electron Quantum Dots, found by Simonović et al. (2003), are traced back to that of the perturbed Kepler problem. A large class of axially symmetric perturbing potentials which allow for separation in parabolic coordinates can easily be found. Apart from the $2: 1$ anisotropic harmonic trapping potential considered in Simonović and Nazmitdinov (2013), they include a constant electric field parallel to the magnetic field (Stark effect), the ring-shaped Hartmann potential, etc. The harmonic case is studied in detail.

© 2013 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A two-electron Quantum Dot (QD) in a perpendicular magnetic field, described by the Hamiltonian,

$$
\begin{equation*}
H=\sum_{a=1}^{2}\left[\frac{1}{2 M}\left(\boldsymbol{p}_{a}-e \boldsymbol{A}_{a}\right)^{2}+U\left(\boldsymbol{r}_{a}\right)\right]-\frac{a}{\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|}, \tag{1.1}
\end{equation*}
$$

where the confining potential is that of an axially symmetric oscillator [1,2],

$$
\begin{equation*}
U(\boldsymbol{r})=\frac{M}{2}\left[\omega_{0}^{2}\left(x^{2}+y^{2}\right)+\omega_{z}^{2} z^{2}\right], \tag{1.2}
\end{equation*}
$$

may carry unexpected symmetries. Firstly, the system splits, consistently with Kohn's theorem, into center-of-mass and relative motion and the former system carries a Newton-Hooke type symmetry [3,4]. Secondly, for the particular values of the frequency ratios

$$
\begin{equation*}
\tau=\frac{\omega_{z}}{\sqrt{\omega_{0}^{2}+\omega_{L}^{2}}}=1,2, \tag{1.3}
\end{equation*}
$$

where ω_{L} is the Larmor frequency, ${ }^{1}$ the relative motion becomes separable in suitable coordinates [1], which hints at further symmetry. This paper is devoted to the study of the latter, and to generalizing them to other axi-symmetric trapping potentials.

Our first step is to trace back the problem to those results found earlier for a particle without a magnetic field, $\boldsymbol{B}=0[5,6]$. Choosing the vector potential $\boldsymbol{A}=\frac{1}{2} B(-y, x, 0)$ and introducing $\boldsymbol{R}=$ $\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{2}\right) / 2$ and $\boldsymbol{r}=\boldsymbol{r}_{1}-\boldsymbol{r}_{2}$, the system splits into center-of-mass and relative parts. Disregarding the first, we focus our attention at the relative motion. Following [1], the relative Hamiltonian becomes, after suitable re-definition,

$$
\begin{equation*}
H \equiv H_{r e l}=-\frac{1}{2 M^{*}}\left(\vec{\nabla}_{\rho}-e i A_{\rho}\right)^{2}+\frac{M^{*}}{2}\left(\omega_{0}^{2}\left(x^{2}+y^{2}\right)+\omega_{z}^{2} z^{2}\right)-\frac{a}{r}, \tag{1.4}
\end{equation*}
$$

where $M^{*}=M / 2$ is the reduced mass and we used units where $\hbar=1$. Now putting

$$
\boldsymbol{r} \rightarrow R(t) \boldsymbol{r}, \quad R(t)=\left(\begin{array}{cc}
\cos \omega_{L} t & \sin \omega_{L} t \tag{1.5}\\
-\sin \omega_{L} t & \cos \omega_{L} t
\end{array}\right), \quad \omega_{L}=\frac{e B}{2 M^{*}}
$$

eliminates the vector potential altogether and the Schrödinger equation of relative motion, $\left[i \partial_{t}-\right.$ $\left.H_{\text {rel }}\right] \psi=0$, goes over into

$$
\begin{equation*}
[i \partial_{t}+\underbrace{\frac{\Delta}{2}+\frac{a}{r}}_{\text {Kepler }}-\underbrace{\frac{1}{2}\left(\omega_{0}^{2}+\omega_{L}^{2}\right)\left(x^{2}+y^{2}\right)-\frac{1}{2} \omega_{z}^{2} z^{2}}_{\text {axi-symmetric oscillator }}] \psi=0, \tag{1.6}
\end{equation*}
$$

where we also assumed that $M^{*}=1$.
The rotational trick (1.5) allowed us, hence, to convert the constant-magnetic-field problem into that of the Kepler potential perturbed by an axially symmetric oscillator [5,6]. In what follows, we only study the latter problem, since all results can be translated to the constant-magnetic context by applying (1.5) backwards. Note that in the original QD problem the electrons repel and thus $a \propto-e^{2}<0$; for completeness, we also consider here the attractive Kepler case $a>0$. Our analysis bears also strong similarities with that of ions in a Paul trap [6].

[^1]
https://daneshyari.com/en/article/1854665

Download Persian Version:

https://daneshyari.com/article/1854665

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: zhpm@impcas.ac.cn (P.-M. Zhang), zoulp@impcas.ac.cn (L.-P. Zou), horvathy@lmpt.univ-tours.fr (P.A. Horvathy), G.W.Gibbons@damtp.cam.ac.uk (G.W. Gibbons).

[^1]: ${ }^{1}$ In the QD problem the Larmor frequency involves the reduced mass $M^{*}=M / 2, \omega_{L}=e B / 2 M^{*}$.

