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HIGHLIGHTS

e The separability of Quantum Dots is derived from that of the perturbed Kepler problem.
e Harmonic perturbation with 2:1 anisotropy is separable in parabolic coordinates.
e The system has a conserved Runge-Lenz type quantity.
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1. Introduction

Atwo-electron Quantum Dot (QD) in a perpendicular magnetic field, described by the Hamiltonian,
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where the confining potential is that of an axially symmetric oscillator [1,2],
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may carry unexpected symmetries. Firstly, the system splits, consistently with Kohn’s theorem, into
center-of-mass and relative motion and the former system carries a Newton-Hooke type symmetry
[3,4]. Secondly, for the particular values of the frequency ratios
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where ; is the Larmor frequency,’ the relative motion becomes separable in suitable coordinates [1],
which hints at further symmetry. This paper is devoted to the study of the latter, and to generalizing
them to other axi-symmetric trapping potentials.

Our first step is to trace back the problem to those results found earlier for a particle without a
magnetic field, B = 0 [5,6]. Choosing the vector potential A = %B(—y, x, 0) and introducing R =
(r1+r;)/2and r = r; —r;, the system splits into center-of-mass and relative parts. Disregarding the
first, we focus our attention at the relative motion. Following [1], the relative Hamiltonian becomes,
after suitable re-definition,

1
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where M* = M /2 is the reduced mass and we used units where i = 1. Now putting
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eliminates the vector potential altogether and the Schrédinger equation of relative motion, [iat —
Hret ] = 0, goes over into
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Kepler axi-symmetric oscillator

where we also assumed that M* = 1.

The rotational trick (1.5) allowed us, hence, to convert the constant-magnetic-field problem into
that of the Kepler potential perturbed by an axially symmetric oscillator [5,6]. In what follows, we
only study the latter problem, since all results can be translated to the constant-magnetic context
by applying (1.5) backwards. Note that in the original QD problem the electrons repel and thus
a < —e? < 0; for completeness, we also consider here the attractive Kepler case a > 0. Our analysis
bears also strong similarities with that of ions in a Paul trap [6].

1 Inthe QD problem the Larmor frequency involves the reduced mass M* = M /2, w; = eB/2M*.
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