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h i g h l i g h t s

• We construct a polarization basis for light which is smooth in all directions.
• Proof that the manifold of all polarizations and directions is S2 × S2.
• Formula for the geometric phase for paths in S2 × S2, generalizing earlier work.
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a b s t r a c t

We construct the manifold describing the family of plane mono-
chromatic lightwaveswith all directions, polarizations, phases and
intensities. A smooth description of polarization, valid over the en-
tire sphere S2 of directions, is given through the construction of an
orthogonal basis pair of complex polarization vectors for each direc-
tion; any light beam is thenuniquely and smoothly specified by giv-
ing its direction and two complex amplitudes. This implies that the
space of all light beams is the six dimensionalmanifold S2×C2

\{0},
the (untwisted) Cartesian product of a sphere and a two dimen-
sional complex vector spaceminus the origin. AHopfmap (i.e.map-
ping the two complex amplitudes to the Stokes parameters) then
leads to the four dimensional manifold S2 × S2 which describes
beams with all directions and polarization states. This product of
two spheres can be viewed as an ordered pair of two points on a
single sphere, in contrast to earlier work in which the same system
was represented using Majorana’s mapping of the states of a spin
one quantum system to an unordered pair of points on a sphere.
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This is a different manifold, CP2, two dimensional complex projec-
tive space, which does not faithfully represent the full space of all
directions and polarizations. Following the now-standard frame-
work, we exhibit the fibre bundle whose total space is the set of all
light beams of non-zero intensity, and base space S2 × S2. We give
the U(1) connection which determines the geometric phase as the
line integral of a one-form along a closed curve in the total space.
Bases are classified as globally smooth, global but singular, and lo-
cal, with the last type of basis being defined only when the curve
traversed by the system is given. Existing as well as new formulae
for the geometric phase are presented in this overall framework.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and summary

Bertolotti [1] formulated the evolution of linear polarization as light traverses a space curve in
an inhomogeneous but locally isotropic medium in the geometrical optics limit. He concluded that
the electric vector is parallel-transported with respect to a connection derived from a conformally
flat metric, where Euclidean distances are scaled by the local value of the refractive index. Rytov [2]
derived this evolution law independently, by a WKB treatment of Maxwell’s equations, and also ex-
pressed it as a phase difference per unit length between the two circular polarizations, proportional
to the torsion of the space curve. Vladimirskii [3] brought out the following geometrical implication:
polarization vectors live in the tangent plane to the sphere of directions and undergo parallel dis-
placement as the direction changes. This implies that after the tangent vector to the curve returns to
its original value (e.g. after one turn of a helix), the polarization rotates by an angle equal to the solid
angle enclosed by the closed trajectory of the tangent vector on this sphere.

Pancharatnam [4], in the context of novel interference patterns shown by absorbing biaxial
crystals, formulated the phasewhichnowbears his name, equal to one-half of the solid angle traversed
on the Poincare spherewhich represents polarization states. Thework of Berry [5] on the phase change
of a quantum state, evolving adiabatically as the Hamiltonian describes a closed path in a parameter
space, and its later generalizations, provides the natural framework in which to discuss this class of
optical situations; see e.g. [6,7] for reviews of early work. The Berry or geometric phase depends on
the path traversed in the parameter space (i.e. the sphere of directions or of polarizations) but not on
the rate of traversal.

Bhandari [8–10], Hannay [11] and Tavrov et al. [12], among others, treated geometric phases under
the simultaneous evolution of direction and polarization. This can be viewed as occurring in a four
dimensional space, whose global structure is naturally of interest. Bhandari used part of a spin one
Hilbert space to represent polarization for a given direction, and then rotation operators to represent
states for different directions. Hannay used the ray space (the space of physical states) of a spin one
Hilbert space to represent both polarization and directions. Such a ray space is constructed from a
three dimensional Hilbert space by identifying vectors differing only in normalization and phase; it
is denoted by CP2, two dimensional complex projective space. The spin one description is indeed
a faithful mapping of the elliptical orbits traversed by the electric fields of the light beams being
considered, which are the same as the orbits of a three dimensional isotropic harmonic oscillator.
However, two problems prevent CP2 from being the four dimensional space that faithfully represents
all directions and polarizations. One is that a given ellipse traversed by the electric vector in a plane in
(real) three dimensional space can correspond to two opposite directions of propagation. This could be
resolved by doubling CP2, using one copy for each sense of circular or elliptic polarization. However,
another problem arises on the boundary between these two regions: an electric field which is linearly
polarized along a given direction can belong, not just to two but, to an entire circle of directions of
propagation in a plane perpendicular to it; i.e. the subspace of linear polarizations in the spin one
model is two dimensional, whereas it should really be three dimensional. Thus the correct global
nature of this space is still not clarified in the existing work, and we address this in our paper.
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