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a b s t r a c t

A new quantum dissipation model based on memory mechanism
is suggested. Dynamics of open and closed quantum systems with
power-law memory is considered. The processes with power-law
memory are described by using integration and differentiation of
non-integer orders, by methods of fractional calculus. An example
of quantum oscillator with linear friction and power-law memory
is considered.
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1. Introduction

A new quantum dissipation model based on memory mechanism is suggested. Dynamics of
open and closed quantum systems with power-law memory is considered. An example of quantum
oscillator with linear friction and power-law memory is considered. The processes with power-law
memory are described by using integration and differentiation of non-integer orders, by methods of
fractional calculus [1,2]. Fractional calculus is a theory of integrals and derivatives of any arbitrary
real (or complex) order. It has a long history from 30 September 1695, when the derivatives of order
α = 1/2 has been described by Leibniz in a letter to L’Hospital [3,4]. The fractional differentiation and
fractional integration go back tomany greatmathematicians such as Leibniz, Liouville, Riemann, Abel,
Riesz, Weyl. There are the special journals: ‘‘Fractional Calculus and Applied Analysis’’; ‘‘Fractional
Differential Calculus’’; ‘‘Communications in Fractional Calculus’’. The first book dedicated specifically
to the theory of fractional integrals and derivatives, is the book byOldhamand Spanier [5] published in
1974. There exists the remarkably comprehensive encyclopedic-type monograph by Samko et al. [1],
which was published in Russian in 1987 and in English in 1993. In 2006 Kilbas et al. published a very
important and remarkable book [2], where one can find amodern encyclopedic, detailed and rigorous
theory of fractional differential equations. Applications of fractional calculus in physics are described
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in the books [6–14]. In general, many usual properties of the ordinary (first-order) derivative Dt are
not realized for fractional derivative operators Dα

t . For example, a product rule, chain rule, semigroup
property have strongly complicated analogs for the operators Dα

t .
The fractional calculus is a powerful tool to describe physical systems that have long-time mem-

ory. Fractional differentiation with respect to time is characterized by long-termmemory effects that
correspond to intrinsic dissipative processes in the physical systems [15–18]. The memory effects to
discrete maps mean that their present state evolution depends on all past states. Note that a power-
law memory has been detected for fluctuation within a single protein molecule [19]. The nonholo-
nomic systems with generalized constraints to describe a long-timememory are considered [20]. The
electrodynamics of dielectric media is described as a fractional temporal electrodynamics [21–23].
The discrete maps with memory are obtained from the fractional differential equations of classical
dynamical systems [24–27].

2. Derivatives and integrals of non-integer order

There are many different definitions of fractional integrals and derivatives of non-integer orders
[1,2].

2.1. A generalization of Cauchy’s differentiation formula

Let G be an open subset of the complex plane C, and f : G → C is a holomorphic function:

f (n)(x) =
n!
2π i


L

f (z)
(z − x)n+1

dz. (1)

A generalization of (1) has been suggested by Sonin and Letnikov in 1872 in the form

Dα
x f (x) =

Γ (α + 1)
2π i


L

f (z)
(z − x)α+1

dz, (2)

where α ∈ R and α ≠ −1, −2, −3, . . . (see Theorem 22.1 in the book by Samko et al. [1]). Expression
(2) is also called Nishimoto derivative.

2.2. A generalization of finite difference

The differentiation of integer order n can be defined by

Dn
x f (x) = lim

h→0

1n
hf (x)
hn

, (3)

where 1n
h is a finite difference of integer order n:

1n
hf (x) =

n
k=0

(−1)k
n
k


f (x − kh). (4)

The difference of a fractional order α > 0 is defined by the infinite series

1α
h f (x) =

∞
k=0

(−1)k
α

k


f (x − kh), (5)

where the binomial coefficients are
α

β


=

Γ (α + 1)
Γ (β + 1)Γ (α − β + 1)

. (6)

The left-and right-sided Grünwald–Letnikov derivatives of order α > 0 are defined by

GLDα
x±f (x) = lim

h→0

∇
α
∓hf (x)
hα

. (7)
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