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a b s t r a c t

We present a method using Feynman-like diagrams to calculate
the statistical properties of random many-body potentials. This
method provides a promising alternative to existing techniques
typically applied to this class of problems, such as themethod of su-
persymmetry and the eigenvector expansion technique pioneered
in Benet et al. (2001). We use it here to calculate the fourth, sixth
and eighth moments of the average level density for systems with
m bosons or fermions that interact through a random k-body Her-
mitian potential (k ≤ m); the ensemble of such potentials with a
Gaussianweight is knownas the embeddedGaussianUnitary Ensem-
ble (eGUE) (Mon and French, 1975). Our results apply in the limit
where the number l of available single-particle states is taken to in-
finity. A key advantage of themethod is that it provides an efficient
way to identify only those expressions which will stay relevant in
this limit. It also provides a general argument for why these terms
have to be the same for bosons and fermions. Themoments are ob-
tained as sums over ratios of binomial expressions, with a transi-
tion from moments associated to a semi-circular level density for
m < 2k to Gaussian moments in the dilute limit k ≪ m ≪ l.
Regarding the form of this transition, we see that asm is increased,
more andmore diagrams become relevant, with new contributions
starting from each of the points m = 2k, 3k, . . . , nk for the 2nth
moment.
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1. Introduction

Random Matrix Theory (RMT) is the study of random matrices with various symmetry conditions
imposed on the matrix entries. With scant warning this young theory has permeated nearly every
area of modern physics and even number theory [1–3]. In quantum physics, random matrices can be
used tomodel the behaviour of Hamiltonians or scatteringmatrices, andmany statistical properties of
chaotic quantum systems have been found to agree with the appropriate predictions from RMT [3,4].
In recent decades attempts have beenmade to further refinewhat has become the canonical theory, by
considering symmetries which allow the matrix representations of quantum potentials to impose k-
body interactions between the particles in a systemcontainingmparticles (k ≤ m). Here themain new
feature is that such an interaction, when applied to one of the states with m particles, will annihilate
k particles and create k particles in (possibly) different single-particle states. This means that matrix
elements between many-particle states that differ by more than k occupied single-particle states will
necessarily be zero. Canonical RMT, containing no such restrictions, can be associated with the case
k = m. The case k = 1 describes random single-particle potentials and hopping terms. Although the
most common interactions have k = 2 it remains of great interest to determine the statistics of such
interactions for the whole physically relevant domain k ≤ m.

The appropriate generalisation of canonical RMT involves embedding the k-body potential into the
m-particle state space creating what has become known as the embedded ensembles. The embedded
ensembles, first introduced by Mon and French [5] in 1975, gave physicists a powerful framework
for studying many-body interactions using randommatrix theory. (See [6,7] for reviews, and [8,9] for
the related two-body random ensemble.) In particular, the embedded Gaussian Unitary Ensemble of
randommatrices (eGUE) represents the Hamiltonian of non time-reversal invariant quantum systems
of m particles interacting under the force of a k-body potential, so called because the potential is a
sum of interaction terms between k-tuples of particles. In addition, many-body Hamiltonians of a
similar form are used independently to study the statistics of quantum spin chains, spin glasses and
(hyper)graphs [10–12] and recent developments point to a convergence of some statistical properties
between these models [12–14].

In one of the main contributions to this area Benet, Rupp and Weidenmüller [15] showed how a
process of eigenvector expansions could be used to calculate certain statistical properties of k-body
potentials, in particular the fourth moment of the average level density. Though a great advance, the
eigenvector expansionmethod is complex to implement, and it remains unclear if it can practically be
used to calculate moments higher than the fourth. The method of supersymmetry, also used in [15]
to investigate the fourth moment, is accompanied by technical difficulties in the loop expansion, and
does not allow one to access the regimem ≥ 2k. A further technique used to treat embedded ensem-
bles is the trace propagation method [7]. Using a new method however, which utilises Feynman-like
diagrams to simplify calculations, we will show that it becomes possible to calculate the fourth, sixth
and eighth moments for embedded ensembles in a straightforward way. The method, which we will
call the method of particle diagrams, is designed to probe the order of magnitude of combinatorial ex-
pressions prior to calculating them explicitly. We will specifically be interested in the case where, in
correspondence with many physical systems, the number of available single-particle states l is taken
to infinity. In this limit estimating the order of magnitude provides a sufficient excuse not to calcu-
late certain terms at all, since we can foretell using particle diagrams that they will not survive in this
asymptotic regime. Hence by applying the method of particle diagrams one is in effect washing out
much of the complexity of the problem, with enough details remaining to yield limiting statistics.

We will present this technique in detail here, significantly extending our previous rapid commu-
nication [13]. First, wewill introduce themethod using the fourthmoment as an example. Afterwards
we will proceed to the sixth and eighth moments, using a further methodological development that
involves studying closed loops on particle diagrams. It will be shown that the (normalised) fourth
moment of the eGUE is given by the combinatorial expression
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