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a b s t r a c t

Guided by results in the premetric electrodynamics of local and lin-
ear media, we introduce on 4-dimensional spacetime the new ab-
stract notion of a Kummer tensor density of rank four, K ijkl. This
tensor density is, by definition, a cubic algebraic functional of a ten-
sor density of rank four T ijkl, which is antisymmetric in its first two
and its last two indices: T ijkl

= −T jikl
= −T ijlk. Thus, K ∼ T 3,

see Eq. (46). (i) If T is identified with the electromagnetic response
tensor of local and linear media, the Kummer tensor density en-
compasses the generalized Fresnel wave surfaces for propagating
light. In the reversible case, the wave surfaces turn out to be Kum-
mer surfaces as defined in algebraic geometry (Bateman 1910). (ii) If
T is identified with the curvature tensor Rijkl of a Riemann–Cartan
spacetime, then K ∼ R3 and, in the special case of general rela-
tivity, K reduces to the Kummer tensor of Zund (1969). This K is
related to the principal null directions of the curvature. We discuss
the properties of the general Kummer tensor density. In particular,
wedecomposeK irreducibly under the 4-dimensional linear group
GL(4, R) and, subsequently, under the Lorentz group SO(1, 3).
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1. Introduction

1.1. Fresnel surface

We consider electromagnetic waves propagating in a homogeneous, transparent, dispersionless,
and nonconducting crystal. The response of the crystal to electric and magnetic perturbations is
assumed to be local and linear. The permittivity tensor εab (a, b = 1, 2, 3) of the crystal1 is anisotropic
in general, and the same is true for its impermeability tensorµ−1

ab . Suchmaterials are called special bi-
anisotropic (see [4–6]). If εab andµ−1

ab are assumed to be symmetric, these bi-anisotropicmaterials are
characterized by 12 independent parameters. In many applications, however, µ−1

ab can be considered
approximately to be isotropic µ−1

ab = µ−1
0 gab; here gab is the 3-dimensional Euclidean metric

tensor. Such cases were already studied experimentally and theoretically in the early 19th century,
before Maxwell recognized the electromagnetic nature of light in 1862 (see [7]). To carry out these
investigations on geometric optics, one used the notions of light ray and of wave vector, and one was
aware (Young, 1801)2 that light was transverse and equipped with a polarization vector.

At each point inside a crystal, we have a ray vector and a wave covector (one-form). It is then pos-
sible to determine the ray surface and its dual, the wave surface, for visualizing how a pulse of light is
propagating. The ray surface was first constructed by Fresnel (1822) and is conventionally called Fres-
nel surface, an expression also used for the wave surface, see the popular introduction by Knörrer [8].
Since the symmetric permittivity tensor can be diagonalized, the Fresnel surface is described by 3prin-
cipal values. In the case when all of them are equal, the Fresnel surface is an ordinary 2-dimensional
sphere. For two unequal parameters, the surface is the union of two shells, a sphere and an ellipsoid.
These two shells touch at two points. In Fig. 1, we display such a surface for a crystal with three dif-

ferent principal values of the permittivity: (εab) =


ε1 0 0
0 ε2 0
0 0 ε3


and (µ−1

ab ) = µ−1
0


1 0 0
0 1 0
0 0 1


. It is a

union of two shells that meet at 4 singular points. As already recognized by Hadamard [9], the wave
surfaces are the characteristics of the corresponding partial differential equations describing thewave
propagation.

The classical 3-parameter Fresnel surface is naturally generalized when the anisotropy of the
impermeabilityµ−1

ab is taken into account. Removing also the diagonalizability requirement, one deals
with generalized Fresnel surfaces of less than 12 parameters. Such surfaces were derived in terms of
positive definite symmetric dyadics by Lindell [11], see also [12].

Moreover, it seems to be rather natural to extend ε and µ to asymmetric tensors, which emerge
if dissipative processes are involved. Recently, one of us [13] derived a tensorial expression of such a
generalized 18-parameter Fresnel surface. The derivation does not require the correspondingmatrices
to be real, symmetric, positive definite, or even invertible.

We here will derive such tensorial expressions for generalized Fresnel surfaces by proceeding
differently. We include first magnetoelectric effects and subsequently look for the corresponding
4-dimensional relativistic covariant generalizations of the 3-dimensional permittivity and imperme-
ability tensors.

1.2. Magnetoelectricity

In the 1960s, substances were found that, if exposed to a magnetic field Ba, were electrically po-
larized Da

= αa
bBb and, reciprocally, if exposed to an electric field Ea, were magnetized, Ha = βa

bEb,
see O’Dell [14]. These are small effects of the order 10−3√ε0/µ0, or smaller.

Such materials are characterized by the constitutive moduli εab, µ−1
ab , αa

b, βb
a, which can be ac-

commodated in a 6 × 6 matrix. Originally, all these moduli were assumed to obey the symmetry

1 The position of the indices are chosen always in accordance with the conventions of premetric electrodynamics, see [1–3].
2 Thomas Young (1773–1829), English mathematician and physicist.
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