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h i g h l i g h t s

• Interactions between butterfly-shaped pulses are investigated.
• Methods to control the pulse interactions are suggested.
• Analytic two-soliton solutions for butterfly-shaped pulses are derived.
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a b s t r a c t

Pulse interactions affect pulse qualities during the propagation.
Interactions between butterfly-shaped pulses are investigated to
improve pulse qualities in the inhomogeneous media. In order to
describe the interactions betweenbutterfly-shapedpulses, analytic
two-soliton solutions are derived. Based on those solutions, influ-
ences of corresponding parameters on pulse interactions are dis-
cussed. Methods to control the pulse interactions are suggested.
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1. Introduction

Solitons, first proposed by Zabusky and Kruskal in 1965, have been investigated in a variety of
nonlinear media [1,2]. Due to the balance between the nonlinearity and other effects, solitons are
stable, localized, and particle-like objects [3]. Subsequently, many methods, such as the Painlevé
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analysis, inverse scattering transformation, the Hirota method, Darboux transformation, similarity
transformationmethod, improved (G′/G)-expansionmethod, mappingmethod, have been developed
to derive soliton solutions for nonlinear evolution equations [4–14]. Applications of solitons have been
involved in such fields as nonlinear optics, fluid dynamics, plasma physics, condensedmatter physics,
solids, particle physics and astrophysics [15–25]. As representative ones, optical solitons have been
studied and perfected by researchers in nonlinear optics [26–29]. Being nonlinear objects, optical
solitons can interact with each other either elastically or inelastically [30].

As to elastic interactions, optical solitons are mechanical particles, whose number is conserved,
without any changes in physical quantities such as their amplitudes, velocities, and shapes after
interactions [31]. Alternatively, inelastic interactions show different phenomena: some solitons
merge together or give birth to new solitons [32]. As a result, co-propagating solitons do interact and
share energy [32]. In fact, when two or more solitons propagate in the inhomogeneous media at the
same time, they interact with each other, and the propagation quality of systems are affected. Hence,
investigations on soliton interactions are necessary before implementing them in nonlinear systems,
and some researches have been carried out [33,34].

By solving the coupled nonlinear Schrödinger (CNLS) equations, bright and bright–dark type
multi-soliton solutions for CNLS equations with focusing, defocusing and mixed type nonlinearities
have been obtained with suitable coefficient constraints, and interaction dynamics of solitons has
been investigated [35–39]. Elastic and inelastic interactions between optical solitons in nonlinear
systems have been studied [32]. Influences of polarization mode dispersion on soliton propagation in
birefringent fibers have been analyzed, and nonlinear gain devices with perturbation terms have been
introduced to reduce soliton interactions [40]. Another research area involved in soliton interactions
is the passive mode-locked fiber lasers [41]. In that field, soliton interactions play a crucial role in
the stable multi-pulse generation mode [41]. States of bound solitons or soliton crystals can occur in
the case of the soliton attraction, while the soliton repulsive accounts for the harmonic passive mode
locking [42–48]. Recently, themechanismof soliton–soliton repulsion and the occurrence of harmonic
passive mode locking have been demonstrated [41].

However, as a type of solitonics, interactions of butterfly-shaped pulses are not reported in the
inhomogeneous media. In this paper, analytic soliton solutions to describe butterfly-shaped pulse
interactions will be derived with the Hirota method. Parameters for the obtained solutions will be
analyzed to discuss the influences on interactions between butterfly-shaped pulses. Suggestions will
bemade toweaken the pulse interactions, and pulse qualitieswill be improved during the propagation
in the inhomogeneous media.

This paper will be structured as follows. In Section 2, analytic two-soliton solutions to describe
butterfly-shaped pulse interactions will be obtained. In Section 3, influences of corresponding
parameters on butterfly-shaped pulse interactions will be analyzed. Finally, our conclusions will be
made in Section 4.

2. Analytic two-soliton solutions

The soliton propagation in the inhomogeneous media can be described by the following variable
coefficients nonlinear Schrödinger (vcNLS) equation [16,32,49]:

∂u
∂z

− i
D(z)
2

∂2u
∂t2

+ iρ(z)|u|2u = g(z)u, (1)

where u(z, t) is the temporal envelope of the pulse. z is the longitudinal coordinate along the inhomo-
geneousmedia, and t is the time in themoving coordinate system. D(z) represents the group-velocity
dispersion (GVD) coefficient, ρ(z) is the coefficient of Kerr nonlinearity, and g(z) is related to the
material amplification coefficient.

To construct the soliton solutions, we perform the dependent variable transformation [50]

u(z, t) =
h(z, t)
f (z, t)

, (2)
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