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a b s t r a c t

We investigated the thermodynamic properties of graphene in a
noncommutative phase–space in the presence of a constant mag-
netic field. In particular, we determined the behaviour of the main
thermodynamical functions: the Helmholtz free energy, the mean
energy, the entropy and the specific heat. The high temperature
limit is worked out and the thermodynamic quantities, such as
mean energy and specific heat, exhibit the same features as the
commutative case. Possible connections with the results already
established in the literature are discussed briefly.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Carbon, in its allotropic forms like graphite and diamond, takes up a prominent place in different
branches of science. In particular, graphite can be thought as composed by stacking one-atom thick
layers of carbon, called graphene. The physics of graphene has attracted attention from theoretical sci-
entific community since experimental observations revealed the existence of electrical charge carriers
that behave asmassless Dirac quasi-particles [1–4]. The reason for this is due to the unusualmolecular
structure of graphene. The Carbon atoms are arranged in a hexagonal lattice, similar to a honeycomb
structure [5]. It was observed that the low-energy electronic excitations at the corners of graphene
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Brillouin zone can be described by a 2 + 1 Dirac fermions with linear dispersion relation (massless)
[3,4]. This effect offers the prospect of testing several aspects of relativistic phenomena, which usually
requires large energy, in experiments of the condensed matter physics such as chiral tunnelling and
Klein paradox [6,7].

On the other side, the study of quantum systems in a noncommutative (NC) space has been the
subject of much interest in last years, assuming that noncommutativity may be, in fact, a result of
quantum gravity effects [8]. In these studies, some attention has been given to themodels of noncom-
mutative quantummechanics (NCQM) [9]. The interest in this approach lies on the fact that NCQM is
a fruitful theoretical laboratory where we can get some insight on the consequences of noncommuta-
tivity in field theory by using standard calculation techniques of quantummechanics. In this context,
several types of noncommutativity have been considered [10] and one case of particular importance
is the so called noncommutative phase–space. This specific formulation is necessary to implement the
Bose–Einstein statistics in the context of NCQM [11,12].

The NC phase–space is based on the assumption that the spatial coordinates x̂i and the conjugate
momenta p̂i are operators satisfy a deformed Heisenberg algebra, which in its simplest form can be
described by the commutation relations:

[x̂i, x̂j] = iθij, [p̂i, p̂j] = iηij,

[x̂i, p̂j] = ih̄

δij +

θikηjk

4 h̄2


, with i, j, k = 1, . . . d,

(1)

where the deformation parameters θij = θϵij and ηij = ηϵij are real and antisymmetric constants
matrices. These commutation relations can be explicitly implemented by means of coordinate trans-
formations [13]:

x̂i = xi −
θij

2}
pj, p̂i = pi +

ηij

2}
xj, (2)

where xi and pi are commutative variables that satisfy ordinary Heisenberg commutation relations,

[xi, xj] = 0, [pi, pj] = 0, [xi, pj] = i}δij. (3)

Recently, graphene in the framework of NCQM was studied by Bastos et al. [14], where the au-
thors determined the Hamiltonian and the associated energy spectrum. It was shown that the elec-
tron states close to the Dirac points (K and K ′ points at the corners of graphene Brillouin zone) in a
NC phase–space, subject to an external constant magnetic field, can be described by a massless 2D
Dirac equation with only momenta noncommutativity. Otherwise, we would have a gauge symmetry
breaking, which it is not observed in the graphene lattice [13].

These results, in associationwith suitable experimental data, may be used to investigate the role of
noncommutativity in the graphene system and improve bounds on the magnitude of the correspond-
ing noncommutative parameters. For instance, the issue concerning the thermodynamic properties
of graphene modified by this kind of theory has not been addressed. Thus, using an approach simi-
lar to the cases of Dirac and Kemmer oscillators studied in Refs. [15,16], we propose to evaluate the
main thermodynamic functions that describe the thermal behaviour of this system in both cases; com-
mutative and noncommutative. One such study with a focus on graphene is particularly interesting
because this material has numerous applications for thermal industry, and it may be important in the
understanding of heat conduction in low dimensions [17–19].

This work is outlined as follows. In Section 2, we summarize the key results of Ref. [14] which we
will use in the sequel. In Section 3, the solution for the energy levels is utilized to calculate the partition
function, and then all thermodynamic quantities that describe the thermal physics of NC graphene.
Themethodology used closely follows that developed in Refs. [15,16]. Finally, in Section 4, we present
the conclusion and final remarks.

2. Graphene in a noncommutative phase–space

Before studying the thermal properties of graphene, let us first recall the fundamentals on the
graphene physics in a NCQM approach. Here, we follow the steps described in Ref. [14]. The basic
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