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h i g h l i g h t s

• We present a totally invariant spacetime energy expression for general relativity incorporating the contribu-
tion from gravity.

• Demand for the general expression to reduce to the Tolman integral for stationary systems supports the Ricci
integral as energy–momentum.

• Localized energy via the Ricci integral is consistent with the energy localization hypothesis.
• New localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-

conserving.
• Suggest the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy–momentum in

strong gravity extreme.
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a b s t r a c t

We introduce a naturally-defined totally invariant spacetime en-
ergy expression for general relativity incorporating the contribu-
tion from gravity. The extension links seamlessly to the action
integral for the gravitational field. The demand that the general
expression for arbitrary systems reduces to the Tolman integral in
the case of stationary bounded distributions, leads to the matter-
localized Ricci integral for energy–momentum in support of the en-
ergy localization hypothesis. The role of the observer is addressed
and as an extension of the special relativistic case, the field of ob-
servers comoving with the matter is seen to compute the intrin-
sic global energy of a system. The new localized energy supports
the Bonnor claim that the Szekeres collapsing dust solutions are
energy-conserving. It is suggested that in the extreme of strong
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gravity, the Heisenberg Uncertainty Principle be generalized in
terms of spacetime energy–momentum.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The unresolved problems of energy and the issue of its localization within general relativity were
debated in the early years of the theory’s formulation. Given their fundamental importance, it is un-
derstandable that they have remained subjects of considerable interest even up to recent times. By
way of a brief history, in the 1920s, some authors including Einstein and Eddington held the view that
while one could work usefully with energy in the traditional sense as a global concept in general rel-
ativity, no satisfactory meaning could be attached to its localization, a situation unprecedented in all
the rest of physics. Their belief was based on themanner inwhich energy–momentum for the gravita-
tional fieldwas incorporated into general relativity. Rather thanhaving a bona fide energy–momentum
tensor T k

i
1 in general relativity to incorporate energy–momentum as in the rest of physics, these au-

thors relied upon an energy–momentum pseudotensor tki , first introduced by Einstein, to play the
equivalent role for gravity. Unlike true tensors, this pseudotensor could be made to vanish at any pre-
assigned point by an appropriate transformation of coordinates, rendering its status rather nebulous.
The pseudotensor was introduced in order to incorporate a global energy and momentum into gen-
eral relativity, a necessary exercise, it was felt, because gravity had not lent itself to inclusion in the
energy–momentum tensor T k

i as it had for all other fields. All fields other than the gravitational field
incorporated themselves into the energy–momentum tensor, and global energy–momentum conser-
vation followed naturally through the vanishing of the ordinary divergence of the energy–momentum
tensor,2

∂T k
i /∂x

k
= T k

i,k = 0. (1)

By integrating (1) over a given 3-volume and applying the Gauss divergence theorem, one readily ex-
presses the time-rate of change of energy and momentum in the given 3-volume as accounted for by
the flux of energy and momentum over the bounding 2-surface of this 3-volume.

However, in general relativity, (1) no longer applies. Rather, it is replaced by the vanishing covariant
divergence of the energy–momentum tensor, viz.3

T k
i;k = 0. (2)

Eq. (2) is the local expression for energy–momentum conservation in general relativity. Through the
covariant derivative, it brings themetric and hence gravity into the conservation statement. However,
with this new form, one can no longer write the integral conservation laws as was the case previously
in special relativity without an essential modification, the introduction of the aforementioned
pseudotensor tki . When this is done, (2) is re-expressed as a vanishing ordinary divergence,

(
√

−g(T k
i + tki )),k = 0 (3)

where g is the determinant of the metric tensor gik.
Through the years, other pseudotensors performing the same function as that of Einstein’s pseu-

dotensor were introduced but they all carried the stigma of being non-covariant objects. In addition,
they were not symmetric and hence did not lend themselves to forming an angular momentum con-
struct as does the symmetric energy–momentum tensor T ik of special relativity. Landau and Lifshitz [1]

1 Latin indices range from 0 to 3 and Greek indices range from 1 to 3. We use units in which G = c = 1.
2 Repeated indices imply summation.
3 A semi-colon denotes covariant differentiation.
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