Contents lists available at SciVerse ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Recent experimental progress in nuclear halo structure studies

Isao Tanihata ^{a,b,*}, Herve Savajols^c, Rituparna Kanungo^d

^a RCNP, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

^b RCNST, Beihang University, Beijing, PR China

^c GANIL, Boulevard Henri Becquerel, Boite Postale 55027, F-14076 Caen Cedex 05, France

^d Astronomy and Physics Department, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada

ARTICLE INFO

Review

Keywords: Neutron halo Unbound nuclei Radioactive Nuclear Beams Inverse reactions Fragmentations Transfer reactions

ABSTRACT

Recent developments (since the last review in J. of Physics G by I. Tanihata in 1996 [1]) at RIB facilities opened possibilities of detailed studies of halo nuclei. New facilities have been constructed to provide higher intensity beams of radioactive nuclei in a wide range of energies. At the time of the last review, only secondary beams by projectile fragmentation were the production source of halo nuclei for use in reaction studies. Since then, re-acceleration facilities have been developed and thus high-quality low-energy beams become available for the reaction studies. The wide variety of new data are thus available on halo nuclei and nuclei on and outside of proton and neutron drip lines.

Low energy beams provided a means to determine the masses and charge radii of halo nuclei (^{6,8}He, ¹¹Li). Also transfer reactions have been measured in many nuclei far from the stability line. In fragmentation facilities, new experimental methods such as gamma ray detection in coincidence with breakup fragments of halo nuclei have been developed. Also the reaction cross sections have been measured in a wide range of beam energies. In addition, proton elastic scattering of halo nuclei has been measured at high energies. All together, studies of density distribution, identification of shell orbitals and spectroscopic factors of halo wave function became possible. Such studies reveal many new important information such as the change of magic numbers in nuclei far from the stability line.

In this article, we would like to review the experimental developments on halo nuclei and other related drip line nuclei. Also the new view of the nuclear structure learned from such studies will be discussed. Development of selected theories on related nuclear structure problems will be mentioned briefly.

© 2012 Elsevier B.V. All rights reserved.

Contents

1.	Introduction		216
	1.1.	Basics of halo formation, two-body halo, three-body halo, and giant halo	216
	1.2.	A bit of history of halo and traditional methods, and the introduction to the review sections	220
2.	Recent	developments in experimental technique	221
	2.1.	Reaching the neutron- and proton-drip lines	221
	2.2.	Ion traps	222
	2.3.	Invariant mass measurements	223
	2.4.	Active target technique	224
3.	Densit	y distribution and proton-neutron radii	227

* Corresponding author at: RCNP, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan. E-mail address: tanihata@rcnp.osaka-u.ac.jp (I. Tanihata).

^{0146-6410/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.ppnp.2012.07.001

	3.1.	Interaction cross section and the density distribution	227
	3.2.	Elastic scattering and density distribution	230
	3.3.	Charge radii of halo nuclei	231
	3.4.	Combined information of charge and matter distribution	232
	3.5.	Difference between skin and halo	237
4.	Beta d	lecay and electromagnetic moments of halo nuclei	238
	4.1.	Beta decay of ¹¹ Li	238
	4.2.	Delayed deuteron emission	240
	4.3.	Beta decay to an extremely high excited state	242
	4.4.	Beta decay of other halo nuclei	242
	4.5.	Electromagnetic moments	243
5.	Spect	roscopy of halo nuclei by breakup reactions	247
	5.1.	Nuclear breakup	247
		5.1.1. Neutron halo	249
	5.2.	Coulomb breakup	260
		5.2.1. Neutron-rich nuclei	262
6.	Spect	roscopy of halo nuclei by transfer reactions	265
	6.1.	One-neutron transfer reactions	268
	6.2.	Two-neutron transfer	269
	6.3.	Charge exchange reactions	271
7.	Chang	ges of shell structures and halo	272
	7.1.	Change of $N = 8$ shell	274
	7.2.	Origin of change of shell orbitals	276
8.	Corre	lation of neutrons in two-neutron halo	279
	8.1.	Spatial correlation from charge and matter radii	280
	8.2.	Spatial correlation from other methods	282
	8.3.	From reaction measurements	283
	8.4.	From Coulomb excitation measurement	286
9.	Unbo	und nuclei around halo nuclei	287
	9.1.	Observables and analysis tools	287
	9.2.	Unbound He isotopes	289
		9.2.1. ⁵ He system	289
		9.2.2. ⁷ He system	290
		9.2.3. ⁹ He system	295
		9.2.4. ¹⁰ He system	298
	9.3.	¹⁰ Li system	300
	9.4.	¹³ Be system	302
	9.5.	¹⁶ B system	303
	9.6.	⁵ H and ⁷ H systems	303
		9.6.1. ⁵ H system	303
		9.6.2. ⁷ H system	304
10.	Halo i	n excited states	305
11.	Future	e perspective	307
	Ackno	wledgments	308
	Refere	ences	308

1. Introduction

1.1. Basics of halo formation, two-body halo, three-body halo, and giant halo

A neutron halo was discovered in ¹¹Li nucleus from the series of experiments including the interaction cross section, the momentum distribution of the ⁹Li fragment from ¹¹Li, and enhancement of the Electro-Magnetic Dissociation (EMD) cross section.

The main concept of the halo is a long tail in the density distribution of a nucleus. In stable nuclei with separation energy of about 6–8 MeV, the density distributions $\rho(r)$ are usually described by a Woods–Saxon type distribution as, (for a spherical nucleus)

$$\rho_{ws}(r) = \rho_0 \left[1 + \exp\left(\frac{r-R}{a}\right) \right]^{-1},\tag{1.1}$$

with diffuseness parameter $a \sim 0.53$ fm. Here $\rho_0 \sim 0.17$ fm⁻¹ is the density at the center and the radius parameter *R* is parameterized by mass number *A* as,

$$R \sim 1.10A^{1/3}$$
 (fm). (1.2)

Download English Version:

https://daneshyari.com/en/article/1855073

Download Persian Version:

https://daneshyari.com/article/1855073

Daneshyari.com