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a b s t r a c t

The method of self-similar factor approximants is shown to be very
convenient for solving different evolution equations and boundary-
value problems typical of physical applications. The method is gen-
eral and simple, being a straightforward two-step procedure. First,
the solution to an equation is represented as an asymptotic series
in powers of a variable. Second, the series are summed by means of
the self-similar factor approximants. The obtained expressions
provide highly accurate approximate solutions to the considered
equations. In some cases, it is even possible to reconstruct exact
solutions for the whole region of variables, starting from asymp-
totic series for small variables. This can become possible even
when the solution is a transcendental function. The method is
shown to be more simple and accurate than different variants of
perturbation theory with respect to small parameters, being appli-
cable even when these parameters are large. The generality and
accuracy of the method are illustrated by a number of evolution
equations as well as boundary value problems.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Differential equations appear in numerous problems of physics, applied mathematics [1–3] and
many other branches of natural as well as social sciences (see, e.g., [4–7]). In the majority of cases,
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these equations are nonlinear and cannot be solved exactly, allowing for exact solutions only in a few
exceptional instances. Then, in order to obtain approximate analytical solutions, one resorts to pertur-
bation theory in powers of some parameters assumed to be small [1–3]. The resulting expressions are
usually rather cumbersome and are difficult to analyze. Also, they form asymptotic series that are use-
ful only for very small expansion parameters.

The validity of perturbative series can be extended to the finite values of parameters by reorganiz-
ing them with the help of the optimized perturbation theory [8]. The basic idea of this theory is to in-
clude in the initial approximation a set of auxiliary parameters which are transformed, at each step of
perturbation theory, into control functions governing the series convergence [8]. The optimized per-
turbation theory has been successfully applied to a great variety of problems, providing rather accu-
rate approximations (see review article [9] and references therein). It has also been applied to solving
differential equations [10–17]. However, the weak point of this approach to finding the solutions of
differential equations is that the optimization procedure results in very complicated equations for
control functions, which are to be solved numerically. It is practically always much easier to solve
the given differential equations numerically than to deal with the cumbersome optimization equa-
tions for control functions, anyway requiring numerical solution. This is why this approach, though
being very useful for many other problems [9], has not found wide practical use for solving differential
equations.

Another method of constructing approximate solutions is based on the self-similar approximation
theory [18–26]. Then the solutions to differential equations can be represented in the form of self-sim-
ilar exponential approximants or self-similar root approximants [27–34]. These approximants repre-
sent well those functions whose behavior at large variables is known to be either exponential or
power-law, respectively.

In the present paper, we advocate a novel approach to constructing approximate solutions of dif-
ferential equations. This approach is based on the use of self-similar factor approximants [35–37]. The
mathematical derivation of the latter also rests on the self-similar approximation theory [18–26], but
the structure of these approximants is rather different from the exponential and root approximants
[27–34]. The structure of the self-similar factor approximants reminds that of thermodynamic char-
acteristics near critical points [38,39]. This is why it has been natural to apply, first, these approxi-
mants to the description of critical phenomena [35–37,40]. It was shown that these approximants
allow us a straightforward and simple determination of critical points and critical indices, agreeing
well with the results of the most complicated numerical techniques, whose description can be found
in articles [41–46] and books [47–49].

The self-similar factor approximants make it possible to define an effective sum of divergent series.
Initially, these approximants were introduced [35–37] for summing the partial series of even orders,
while the summation of odd-order series was not defined. Recently, the method was completed by
defining the factor approximants of odd orders [40,50]. Now we have in hands a general and uniquely
prescribed procedure for constructing the self-similar factor approximants of arbitrary orders. We
show below that this procedure can be employed for finding very accurate approximate solutions
to differential equations. In some cases, the method gives exact solutions, if these exist. The approach
is very general, being applicable to linear as well as to nonlinear equations, and to initial-value as well
as to the boundary-value problems. The principal difference of the method from other perturbation
theories [1–3] is that we, first, represent the sought solutions as an asymptotic series in powers of
the equation variable, but not in powers of a parameter. And, second, we extrapolate the given series
to the whole range of the variable by means of the self-similar factor approximants. The advantage of
the method is its extreme simplicity combined with the high accuracy of the obtained solutions.

2. Self-similar factor approximants

Here we describe the general procedure of constructing self-similar factor approximants as solu-
tions to differential equations. We keep in mind ordinary differential equations, though the procedure
can be generalized to partial differential equations. It would be unreasonable to plunge from the very
beginning to complicated matters, but the principal idea should, first, be illustrated by not too com-
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