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1. Introduction

Non-relativistic conformal transformations have initially been discovered as those space-time
transformations that permute the solutions of the free Schrédinger equation [1,2]. In D + 1 dimen-
sional non-relativistic space-time with position coordinates y and time y we have, in addition to
the (one-parameter centrally extended) Galilean generators, also
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(y,t) — (v, t") = (oy,o’t) dilatation,
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referred to as “non-relativistic conformal transformations”. Added to the Galilean symmetries pro-
vides us with the Schrédinger group. Dilatations, expansions and time translations span an
0(2,1) ~sl(2,R) subalgebra.

These rather mysterious extra symmetries have been identified as the isomorphisms of the struc-
ture of non-relativistic space-time [3,4]. For “empty” space, one gets, in particular, the (one-parameter
centrally extended) Schrodinger group. Conformal transformations act as symmetries also when an in-
verse-square potential is introduced [1,5]. In D = 3 a Dirac monopole can be included [6,7], and in
D = 2 one can have instead a magnetic vortex [8]. Full Schrodinger symmetry is restored for a matter
field interacting with a Chern-Simons gauge field [9,10]. It can also be present in hydrodynamics
[11,12]. See also [13].

Recently, the AdS/CFT correspondence has been extended to non-relativistic field theory [14-17].
The key point is to use the metric
dt’

gudxdx’ = :—2 dx? + dr* + 2dtds — =

= rlzguv dx" dx’, (2)
where X is an d-dimensional vector and r an additional coordinate. The metric (2) is a d + 3 dimen-
sional relativistic space-time, conformally related to the pp-wave defined by g,, on the same mani-
fold. The interesting feature of the metric (2) is that its isometries are the conformal transformations
of d + 1 dimensional non-relativistic space-time, with coordinates (X, t).

Below explain the construction and properties of this metric, and illustrate it on some physical
examples.

2. Siklos spacetimes

The metric (2) belongs to the class of Siklos spacetimes [18-20], interpreted as exact gravitational
waves traveling along AdS,

gudxdx’ = rl—z dx? + dr* + 2dtds — F(x,r,t)dt*|. 3)

& = 9 is a null Killing vector. The metric (3) can also be presented as g,, = g,*)?,s — r?F¢,¢,, generalizing
the familiar Kerr-Schild transformation. For F = 0, (3) reduces to the anti-de Sitter metric.
The Einstein tensor of (3) satisfies

C,uv + Aguv = péuéw

4
p:;(@fFfd%l&thAxF), @

where A = —(d + 1)(d + 2)/2. Hence, these spacetimes are solutions of gravity with a negative cosmo-
logical constant, coupled to light-like fluid. The only non-vanishing component of the Einstein-de Sit-
ter tensor is Gy + Ag.

The RHS of (4) is traceless, since it is the energy-momentum tensor of some relativistic fluid made
of massless particles. When F satisfies the Siklos equation [19]

oF— 4t g F s aF—o, (5)
r r

then p = 0 and (3) is the AdS,,5; metric.

The effect of a conformal redefinition of the metric, g, — 8uv = nguv has been studied by Brink-
mann [21]. Applied to our case, we see that the Einstein equation of the pp-wave g, in (1) goes over,
for @ = r~1, to that with negative cosmological constant, appropriate for g,.
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