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Abstract

Belief Propagation algorithms acting on Graphical Models of classical probability distributions,
such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful
known methods for deriving probabilistic inferences amongst large numbers of random variables.
This paper presents a generalization of these concepts and methods to the quantum case, based
on the idea that quantum theory can be thought of as a noncommutative, operator-valued, general-
ization of classical probability theory. Some novel characterizations of quantum conditional inde-
pendence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks,
Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markov Networks
is investigated and some partial characterization results are obtained, along the lines of the Ham-
mersley–Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to
converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The
use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to con-
verge is discussed. Applications to decoding quantum error correcting codes and to the simulation of
many-body quantum systems are described.
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1. Introduction

Quantum theory is first and foremost a calculus for computing the probabilities of out-
comes of measurements made on physical systems. Therefore, the generic problem in
quantum theory is one of probabilistic inference, i.e. given a specified class of quantum
states, compute the predicted probabilities of measurement outcomes and their correla-
tions. For example, computing the correlation functions of a system in the ground state
of a Hamiltonian, or computing the probabilities for the possible measurement outcomes
after implementing a quantum circuit, are problems of this general type. Such quantum
inferences present a formidable computational challenge as the number of subsystems
becomes large, since the number of parameters needed to specify a quantum state grows
exponentially with the number of subsystems, and the formulas for quantities of interest
typically also involve an exponentially large number of terms.

A similar problem arises in classical probabilistic inference, since the number of terms
required to specify a general probability distribution also grows exponentially with the
number of random variables involved. A variety of algorithms for classical probabilistic
inference have been discovered, of which Belief Propagation algorithms on Graphical
Models are amongst the most powerful. Such algorithms are particularly interesting for
two reasons. Firstly, they are highly parallelizable in the sense that they can be imple-
mented by associating each random variable with a separate processor. Messages are
received and sent by the processors along the links of a network corresponding to the
edges of a graph and, importantly, the order in which the messages arrive does not matter.
Secondly, Belief Propagation performs remarkably well as a heuristic algorithm, even in
cases where it is not guaranteed to converge to the exact solution. Important examples
include the near optimal decoding of low density [14] and turbo [8] error correction codes,
spin glass models [33], and random satisfiability problems [34]. Understanding the reasons
for this is currently an active area of research, but it is understood [58] to be related to a
hierarchy of approximation schemes commonly used in statistical physics.

Due to the similarity between the classical and quantum problems, one might hope to
leverage the power of Belief Propagation in the quantum case also, especially since quan-
tum theory can be regarded as a noncommutative generalization of classical probability
theory. This is indeed the case, and in this paper we develop the necessary theory of Quan-
tum Belief Propagation and its associated Graphical Models.

This paper should be of interest to researchers in Graphical Models and Belief Propa-
gation, as well as to researchers in quantum theory, particularly in quantum information
and the simulation of quantum many-body systems. As such, it is intended to be as self-
contained as possible, although we do assume familiarity with the basic formalism of
quantum theory on finite dimensional Hilbert spaces, including the theory of density
matrices, generalized measurements and completely positive maps, as used in quantum
information theory. These are covered in detail in the textbook of Nielsen and Chuang
[38], as well as in Preskill’s lecture notes [43]. For further background on classical Graph-
ical Models and Belief Propagation, we suggest the texts of Lauritzen [24], MacKay [31],
and Neapolitan [36,37], as well as the review articles by Yedida et al. [58,59] and Aji and
McEliece [6].

The remainder of this paper is structured as follows. In Section 2, the generic classical
and quantum probabilistic inference problems are defined. In Section 3, we review the
notions of classical and quantum conditional independence, which are crucial for the
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