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a  b  s  t  r  a  c  t

Several  ways  of  simulating  time-dependent  migration  effects  at an  electrolytic  liquid junction  are
explored,  for  a simple  uni-univalent  electrolyte,  both  with  the  full  Nernst-Planck-Poisson  (NPP)  equation
set  and  the  reduced  set  from  the  electroneutrality  condition  (ENC)  assumption.  Using  the  NPP  approach,
the  system  can  be  simulated  using  all three  variables  (method  AB�),  the  two  concentrations  and  the
potential,  or  the  two  concentrations  and  the  potential  field  (method  ABE),  or in principle  by substituting
for  the  potential  field,  thereby  reducing  to the two concentration  variables  (method  AB).  The  two  first
methods  are  about  equally  efficient,  whereas  the  latter  method  is  seen  to be  quite  inaccurate.  Results  at
long times  compare  very  well  with  the  Henderson  equation.  Using  the  full  NPP  set,  junction  potentials
are  time-dependent  but  not  when  applying  the  ENC,  where  the  potential  rises  to  the  Henderson  value
immediately.  Results  for  KCl  and  HCl  are  presented,  with  left/right  concentration  ratios  equal  to 0.1  in
both  cases.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Liquid junctions between electrolytes of different composi-
tion or ionic strength have attracted attention since the time of
Nernst [1,2], Planck [3] and Henderson [4]. These authors derived
equations of the junction potential, assuming the electroneutral-
ity condition (see below), presumably because it made analytical
solution possible. More recent analytical works include those of
Schlögl [5], MacGillivray [6] (justifying electroneutrality), Hickman
[7] (using electroneutrality) and Jackson [8] (avoiding it), Aguilella
et al [9] (also using it), to mention a few. These were long-time
solutions, time dependent solutions (still) not being amenable. For
these, simulation techniques must be resorted to. In electrochem-
istry, apart from the interest in potentials across the tips of salt
bridges, where two different electrolytes meet, or if an electrolyte
in which electrolysis is carried out does not contain rather strong
supporting electrolyte, migrational effects appear, which must be
included in theoretical treatments of the behaviour of such cells.

There is a set of classical works cited in almost every paper on
the simulation of migration. Probably the earliest simulation paper
is that of Helfferich [10] simulating migration in an ion exchange
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bead, whereas Cohen and Cooley [11] are usually cited as a very
early effort, using an explicit method [12,13]. Scharfetter and Gum-
mel  [14] simulated n and p drift-diffusion in a semiconductor,
which obeys the same mathematics as ion electro-diffusion [15] in
solution, and this paper is interesting for several reasons, to be gone
into later. Buck [16] wrote a review of ionic transport, describing the
shortcomings but also the wide applicability of the Nernst-Planck
equation. Many others have written about this subject and some
will appear in what follows, in various contexts.

The system to be simulated is as follows, see Fig. 1. There are
two chambers stretching along distance variable x, −l ≤ x ≤ l  con-
taining the salt AB, cation A+ and anion B−. In the left half AB is at
concentration cL and in the right half at cR uniformly initially, with
a sharp boundary at x = 0, where we set it at (cl + cR)/2 initially. The
length l is chosen so that the cell is essentially semi-infinite in both
directions away from the center. Therefore, the simulated system is
a free-diffusion junction [17] with a boundary without a separating
membrane, initially at x = 0.

This system depicted in Fig. 1 describes the case for a length
where concentrations are held constant at each end. It could be
a membrane between two  well stirred solutions. Experimentally,
the situation of a watery boundary can also be be realised in
microchannels, involving dual-stream laminar flow of two  aque-
ous solutions along each other carrying different electrolyte salts
at various concentrations [18–22] forming a flowing junction [17].
Good agreement between the calculated values of the diffusion
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Fig. 1. Liquid junction of length 2L. At the dashed line, the two different concentra-
tions meet at T = 0.

potential using the Henderson equation [20] and numerical solu-
tions of the Nernst-Planck equation [21,22] and the measured
open-cicuit potentials has been found.

In the following, the abbreviation NPP refers to the full
Nernst-Planck-Poisson equation set, whereas NP refers to the
Nernst-Planck equations without the Poisson equation.

2. Local electroneutrality or Poisson equation?

There is continuing discussion in the literature on the applicabil-
ity (or otherwise) of the local electroneutrality condition (ENC). The
Poisson equation relates the charge distribution to the electrical
potential. For electrolyte solutions the Poisson equation is

�xx = − F
�r�0

s∑
i=1

zici (1)

where �xx is the second derivative of the potential with respect to
the space variable x, F the Faraday constant, �r the relative permit-
tivity of the medium (e.g. for water, �r = 80), �0 is the permittivity of
free space (�0 = 8.854188 × 10−12F/m), zi and ci are the charge and
concentration, respectively of ion i of a total of s species present in
solution.

It is known that local charge separation is extremely small in
magnitude [23,24]; if it were not, huge potential gradients would
appear. Therefore, the Poisson equation is often replaced by
∑
i

zici = 0 , (2)

the electroneutrality assumption (see also later).
We cite only a few representative works here. Classically, Nernst

[1,2], Planck [3] and Henderson [4] applied this condition in order
to obtain their equilibrium solutions for liquid junction potentials.
Strong support for ENC is given by Newman [17]; Oldham and Bond
argue [25] for it, coining the term “electrodisparity” for its opposite;
Myland and Oldham [26] call it “a requirement”, and Smyrl and
Newman [27] used it to compute a large number of liquid junction
potentials, a useful standard of comparison.

On the other hand, many have pointed out that at short times
or short distances (e.g. thin membranes, of the order of only a few
Debye lengths) the Poisson equation is required. Mafé et al [23]
write that digital simulations do not become easier using the ENC;
Jackson, who obtained an analytical solution rejected it [8] writing
that “The charge density does indeed go to zero as t−1” but needs
of the order of 10−9 seconds to do so. Smith and White [28] men-
tion that ENC cannot be used for simulation of very small spheres.
Instead of the ENC, Goldman [29] introduced the constant field
assumption (E = constant), which becomes consistent with the Pois-
son equation if the Debye length and the diffusion length are of the
same size [24].

Some review articles have been written, in an attempt to dispel
the apparent contradiction between the ENC assumption and the
fact that potentials do emerge from theory making that assumption
[30,31], to name just two.

3. Theory

For the partial derivatives, we  use the notation, for example, At

as the first time derivative, Ax as the first spatial derivative and Axx

as the second spatial derivative.
The governing Nernst-Planck (NP) and Poisson equations, as

normally expressed, are for the system as specified above

at = DA(axx + ax �x + a �xx)

bt = DB(bxx − bX �X − b �xx)

0 = F
�r�0

(a − b) + �xx

(3)

where � is the potential, t the time, DA and DB the diffusion
coefficients of A+ and B−, respectively, F the Faraday constant, �r

the relative permittivity of the medium, and �0 the permittivity of
free space (values provided above). The last equation is the Pois-
son equation for the present uni-univalent electrolyte. It has been
pointed out by Buck [16] that the NP equations have several fail-
ings, that apply at very short times (<10−12 s) and distances smaller
than the Debye length, as well as at higher concentrations, where
cross terms apply, that is, ions act to limit the transport of each
other. Mafé et al [23] also refer to “the approximate” nature of the
NPP equations. These problems do not concern us here, as we are
outside the regimes where they are of concern.

There are various possibilities for normalising the variables;
concentrations could be normalised by the higher one, e.g. cR on
the right, or the expected final concentration at equilibrium; let
whatever we choose be c*, for example cR as is often chosen.

Distance can be normalised by the Debye length as used by Hick-
man  [7] and later by Dickinson et al [32] and defined by Mafé et al
[23,24],

LD =
√
�r�0RT

F2c∗
. (4)

Diffusion coefficients DA and DB are normalised by some chosen
reference value D*, for example

√
DADB or (as is often done) by DB

(chosen here). The dimensionless variables are then

A = a/c∗

B = b/c∗

CL = cL/c∗

CR = cR/c∗

  = F
RT
�

X = x/LD

L = l/LD

� = D∗t/L2
D

dA = DA/D∗

dB = DB/D∗ .

(5)

In the following, several methods are described. There are other
possibilities. The Poisson equation, perhaps reduced to the elec-
troneutrality condition by elimination of  ,  can always be used to
reduce one of the unknowns to one fewer. This is done, as will be
seen, in methods AB and ENC.
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