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a b s t r a c t

The experimental results of Kocsis et al., Mahler et al. and the
proposed experiments of Morley et al. show that it is possible to
construct ‘‘trajectories’’ in interference regions in a two-slit inter-
ferometer. These results call for a theoretical re-appraisal of the
notion of a ‘‘quantum trajectory’’ first introduced by Dirac and in
the present paper we re-examine this notion from the Bohm per-
spective based on Hamiltonian flows. In particular, we examine
the short-time propagator and the role that the quantum potential
plays in determining the form of these trajectories. These trajecto-
ries differ from those produced in a typical particle tracker and the
key to this difference lies in the active suppression of the quantum
potential necessary to produce Mott-type trajectories. We show,
using a rigorous mathematical argument, how the active suppres-
sion of this potential arises. Finally we discuss in detail how this
suppression also accounts for the quantum Zeno effect.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

There has been a revival of interest in the question of whether any meaning can be given to
the notion of a particle trajectory in the quantum domain where field theory has already been
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so successful. However, the question originally raised by Kemmer [1] remains, namely, how do we
discuss the limiting process through which the particle is identified by the track it leaves in a tracking
device like a bubble chamber. To construct a trajectory, we need the notion of a local momentum, a
notion that has been assumed to be ruled out by the uncertainty principle. However, the uncertainty
principle is about a simultaneous measurement of the position andmomentum and cannot answer the
question as to whether or not the quantum particle actually has a simultaneous value of its position
and momentum. A further question remains, namely, that if a local momentum exists, how do we
measure it?

Wiseman [2] was one of the first to point out that the weak value of the momentum operator is
the local momentum or the Bohm momentum in the Bohm approach. (See also Hiley [3] for a wider
perspective.) Duck, Stevenson and Sudarshan [4] have shown how weak values can be measured in
what are called weak measurements, a result that immediately opens up the possibility of an experi-
mental investigating the trajectories such as those calculated by Philippidis, Dewdney and Hiley [5] in
the interference region of a two-slit interferometer. Indeed, the local momentum (essentially Poynt-
ing’s vector [6]) of the electromagnetic field has already been measured in the experiments of Kocsis
et al. [7] and Mahler et al. [8] who used a quantum dot to generate a weak intensity field which was
then passed through a two-slit system.Measurements of the local momentumwere then used to con-
struct what they called ‘‘average photon trajectories’’. In this sense they are returning to the notion of
a ‘‘quantum trajectory’’ first introduced by Dirac [9].

Although these flow lines have some resemblance to the trajectories of Philippidis et al. [5] referred
to above, they cannot be compared directly because the latter are calculated using the Schrödinger
equation, whereas photons are excitations of the electro-magnetic field. A treatment of the field ap-
proach from the Bohmian point of view has been given by Bohm, Hiley and Kaloyerou [10] and by
Kaloyerou [11]. Thus it is not clear that photons can be considered to be travelling along trajectories.
However Morley, Edmonds and Barker [12] are now carrying out a similar experiment using, instead,
argon atoms with an aim to construct trajectories which can be directly compared with the theoret-
ically predicted ones.

In light of this background, we explore the relation between the trajectories determined in a
general interference region and the trajectories that are seen in a particle tracker more closely using
theHamiltonian flowmethod developed by deGosson [13]which, in turn, clarifies the Bohmapproach
as discussed in Bohm and Hiley [14]. This latter approach centres on the real part of the Schrödinger
equation under polar decomposition of the wave function, which takes the form
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where QΨ (x, t) is the quantum potential defined by
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This equation, the quantum Hamilton–Jacobi equation, like its classical counterpart, enables us to
calculate an ensemble of trajectories once we are given a solution of the Schrödinger equation for the
experimental situation under investigation. Clearly, the key to the different forms of trajectories lies
in the appearance of the quantum potential. We will show how this potential arises naturally in the
method of Hamiltonian flows and study its behaviour in more detail.

As two of us [15] have already shown for the particular case of a point source, the quantummotion
of the particle always reduces to the classical Hamiltonian trajectory for short times. Thus, in this case
the non-appearance of the quantum potential will guarantee classical behaviour. In this paper we
generalize our theory to the case of arbitrary initial conditions. In this waywe provide a rigorous proof
of how the Bohmian approach explains this phenomenon without appealing to any wavefunction
collapse.

Our investigations show that the key to the appearance of the classical behaviour is the suppression
of the quantum potential. Indeed we find that all quantum phenomena arise from the presence of this
term in the real part of the Schrödinger equation. Therefore, its suppression will inhibit quantum
transitions and this is what is required to explain the quantum Zeno effect.
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