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HIGHLIGHTS

We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields.
The evolution operator is worked out through the Lie algebraic approach.

We also obtain the propagator and Heisenberg picture position and momentum operators.
Analytical expressions for a rotating quadrupole field ion trap are presented.

Exact solutions for magneto-transport in variable electromagnetic fields are shown.
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Microwave induced magnetoresistance Hamiltonian. This algebra is later extended to study the Hamil-
oscillations tonian of a charged particle in electromagnetic fields exploiting
the similarities between the terms of these two Hamiltonians.
These results are applied to the solution of five different examples:
the linear potential which is used to introduce the Lie algebraic
method, a radio frequency ion trap, a Kanai-Caldirola-like forced
harmonic oscillator, a charged particle in a time dependent mag-
netic field, and a charged particle in constant magnetic field and
oscillating electric field. In particular we present exact analytical
expressions that are fitting for the study of a rotating quadrupole
field ion trap and magneto-transport in two-dimensional semi-
conductor heterostructures illuminated by microwave radiation.
In these examples we show that this powerful method is suitable
to treat quadratic Hamiltonians with time dependent coefficients
quite efficiently yielding closed analytical expressions for the prop-
agator and the Heisenberg picture position and momentum oper-
ators.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The simple quantum oscillator is the building block of a very large number of well established
physical models. Some of its most widespread applications are the atomic and molecular bonds that,
under certain approximations, can be modelled by quadratic potentials. Time-dependent general
harmonic oscillators (GHO), the most general version of a simple quantum harmonic oscillator, are
not only relevant from the theoretical point of view but are also at the heart of many interesting
applications as quantum optics [1-3], radio-frequency ion traps [4-11], quantum field theory [12],
quantum dissipation (Kanai-Caldirola Hamiltonians) [ 13-19], and even cosmology [20,21]. Moreover,
the GHO is the base to build more complex time dependent Hamiltonians such as the one of a
charged particle subject to variable electromagnetic fields. This Hamiltonian has been applied to the
study of interesting systems in fields such as quantum optics [22] and magneto-transport in lateral
heterostructures subject to electromagnetic fields [23-26]. Since in many cases these Hamiltonians
possess exact solutions, they have turned into key elements to understanding and modelling a wide
variety of physical systems characterized by time dependent Hamiltonians.

The GHO Hamiltonian consists of a simple harmonic oscillator with time-varying coefficients, time-
dependent linear terms on the position and momentum operator and an extra term proportional to
the symmetrized product of the position and momentum operators. It can be described by following
Hamiltonian

A= %a(t)ﬁ2 + %b(t) (kD + pR) + %c(t)&2 +d®O)p+e®)x+g (), (1)

where X and p are the position and momentum operators obeying the usual commutation relation
[)?, f)] =ihanda,b,c,d, eand g are in general functions of time.

It has been studied by diverse mathematical methods such as the group-theoretical approach [27],
the path integral approach [28], unitary transformations [7,29], and the Lewis and Riesenfeld [30]
invariant theory [31-35,18]. The linear potential, a particular case of the GHO, has been treated
through powerful methods as the Lewis and Riesenfeld [30] invariant theory [36-38], Feynman’s
path integrals [39-43], the generalization of the well known ladder operators [44], Laplace transform
techniques [45], time-space transformation methods [46] and others [47,48]. The charge particle
in electromagnetic fields has been studied through different methods that include the Lewis
and Riesenfeld [30] invariant theory [49,50], path integral method [51], unitary transformation
approach [52,19], and through quadratic invariants [53].
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