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a b s t r a c t

We analyze the quantization of the Pais–Uhlenbeck fourth order
oscillator within the framework of deformation quantization. Our
approach exploits the Noether symmetries of the system by
proposing integrals of motion as the variables to obtain a solution
to the ⋆-genvalue equation, namely the Wigner function. We also
obtain, by means of a quantum canonical transformation the wave
function associated to the Schrödinger equation of the system.
We show that unitary evolution of the system is guaranteed
by means of the quantum canonical transformation and via the
properties of the constructedWigner function, even in the so called
equal frequency limit of the model, in agreement with recent
results.
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1. Introduction

Whenever one consider curvature terms, for example in general relativity or brane inspired mod-
els, one is faced naturally with field theories described by Lagrangians with higher order deriva-
tive terms. The Pais–Uhlenbeck fourth order linear oscillator, originally introduced in [1], is perhaps
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the simplest example and definitely the best known higher derivative mechanical system and, in
particular, it has served as a toy model to understand several important issues related to Ostrograd-
sky instabilities emerging naturally in higher order field theories [2–8]. Recently, the Pais–Uhlenbeck
oscillator has been used as a guide to study higher order structures associated to supersymmetric
field theory [9], PT -symmetric Hamiltonian mechanics [10], and geometric models within the scalar
field cosmology context [11]. In this sense, it is important to mention that naive quantization pro-
cedures for the Pais–Uhlenbeck model has to be enhanced in order to recover unitarity in a physical
allowed sector. Our main motivation is thus to address for the Pais–Uhlenbeck oscillator, within the
perspective of the deformation quantization formalism, the long standing problems associated to the
non-unitarity of higher derivative theories. As we will see, within our formulation the unitarity is
guaranteed straightforwardly, even in the equal frequency limit of the model, by the introduction of
a well-defined Wigner distribution.

The framework of deformation quantization was introduced in [12] as an alternative approach to
the problem of quantization. In this formalism one uses, as guidelines, the Dirac quantization rules
in order to pass from classical physics to the quantum realm. As is to be expected, a consistency
requirement for such a quantum theory is the existence of a classical limit, that is, a quantum system
should reduce to its classical counterpart whenever the limit of h̄, the Planck constant, tends to zero.
From this perspective, the quantization of a classical system could be seen as a deformation of the
algebraic structures involved in a parameter encoding the quantum nature associated to the system
(h̄ in our case). Furthermore, the quantization rules require that for any classical observable there
is a corresponding quantum observable, and similarly, that the Poisson bracket corresponds to the
quantum commutator. All these requirements can be achieved by replacing the usual product of
the algebra of smooth functions on the classical phase space with an associative non-commutative
product, depending on h̄, such that the resulting commutator is a deformation of the Poisson bracket.
We refer the reader to [13], where results on the explicit construction of maps between classical and
quantum observables are explained in detail, to Refs. [14,15], where conditions on the existence of the
star product are exposed, and to the reviews [16–18] for general aspects of deformation quantization,
as well as for more recent developments.

Our approach is based on taking advantage of the symmetries inherent to the Pais–Uhlenbeck
model in order to construct the Wigner function that contains the relevant quantum information
of the system. In this manner, we show that there exists a couple of integrals of motion associated
to Noether charges, which in turn serve as privileged variables in order to find the solutions to the
⋆-genvalue equation. Further, in order to obtain the quantum wave functions we consider both, clas-
sical and quantum canonical transformations. At a classical level we transform, in a standard way, the
Pais–Uhlenbeck system to a simpler model composed of the difference of two uncoupled harmonic
oscillators for which the Wigner function may be also obtained. We then use the latter Wigner func-
tion to obtain a wave equation which, by means of a quantum canonical transformation, may be used
in order to obtain the quantum wave function for the original Pais–Uhlenbeck system. The result-
ing wave function is identical to the one obtained in [6] by a different reasoning. We also show that
in the equal frequency limit of the model the source of the continuous spectrum can be traced out
through a linear canonical transformation that maps the Pais–Uhlenbeck Hamiltonian to a Hamilto-
nian composed of a discrete spectrum part plus a continuous spectrum part, contrary to the unequal
frequency case. Besides, we demonstrate that in the equal frequency limit the Wigner function is
certainly unitary as consequence of composition of unitary transformations considered through the
quantum canonical transformations. In this sense, our results explicitly manifest the ghost-free fea-
ture of the Pais–Uhlenbeck model, in complete agreement with [4,6].

The article is organized as follows. In Section 2, we include a brief review of deformation quanti-
zation in order to set our notation and to define some useful structures. We also consider quantum
canonical transformations as they will be essential in our context to obtain the wave functions associ-
ated to the Pais–Uhlenbeck oscillator. In Section 3, we analyze the Wigner function for our model
in terms of its integrals of motion and we identify the quantum wave equation. Also, in this sec-
tion we detail the equal frequency limit for the Pais–Uhlenbeck oscillator. In Section 4, we include
some concluding remarks. Finally, we address some technical issues related to the construction of the
Pais–Uhlenbeck wave function in the Appendix.
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