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a b s t r a c t

A complete description of vector Bessel (vortex) beams in the con-
text of the generalized Lorenz–Mie theory (GLMT) for the elec-
tromagnetic (EM) resonance scattering by a dielectric sphere is
presented, using themethod of separation of variables and the sub-
traction of a non-resonant background (corresponding to a per-
fectly conducting sphere of the same size) from the standard Mie
scattering coefficients. Unlike the conventional results of standard
optical radiation, the resonance scattering of a dielectric sphere in
air in the field of EM Bessel beams is examined and demonstrated
with particular emphasis on the EM field’s polarization and beam
order (or topological charge). Linear, circular, radial, azimuthal
polarizations as well as unpolarized Bessel vortex beams are con-
sidered. The conditions required for the resonance scattering are
analyzed, stemming from the vectorial description of the EM field
using the angular spectrum decomposition, the derivation of the
beam-shape coefficients (BSCs) using the integral localized ap-
proximation (ILA) and Neumann–Graf’s addition theorem, and the
determination of the scattering coefficients of the sphere using De-
bye series. In contrast with the standard scattering theory, the res-
onancemethod presented here allows the quantitative description
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of the scattering usingDebye series by separating diffraction effects
from the external and internal reflections from the sphere. Fur-
thermore, the analysis is extended to include rainbow formation
in Bessel beams and the derivation of a generalized formula for
the deviation angle of high-order rainbows. Potential applica-
tions for this analysis include Bessel beam-based laser imaging
spectroscopy, atom cooling and quantum optics, electromagnetic
instrumentation and profilometry, optical tweezers and tractor
beams, to name a few emerging areas of research.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Breakthroughs and advances in physics have been mostly accomplished by using wave scattering
phenomena, as one of the most efficient strategies to probe and characterize a particle of a collection
of particles. Moreover, diffraction in systems involving any kind of wave propagation (i.e., electro-
magnetic/optical [1], mechanical/acoustical, gravitational) is recognized as one of the limiting factors
for various industrial and technological advances. For example, in electromagnetic (EM)/optical laser
beams and pulses, diffraction, manifested by a gradual spatial broadening of the beam, decreases im-
age resolution and collimation quality in imaging, holography, microscopy, tweezers and lithography
to name a few applications. Thus, it is of utmost importance to develop novel adequate techniques, op-
erational devices and apparatuses capable of alleviating the beam distortion and the resulting degra-
dation effects.

Those challenges have fueled physicists and engineers to investigate unconventional beam
solutions and improved instrumentation tools that resist diffraction over an extended region in
space. At present, such ‘‘non-diffracting’’ waves [2] are well established both theoretically and
experimentally, and innovative applications in fundamental and applied physics are increasingly
burgeoning, demonstrating the ability to resist not only diffraction but also the simultaneous effects
of attenuation and dispersion in liquid, elastic and viscoelastic dispersive media.

A particular example that received significant attention is known as the Bessel beam (BB), which
originates in the scalar wave diffraction theory as an exact solution of the wave equation [3–6],
�2Ψi = 0, whereΨi is a scalar wave functionwhich describes the propagating field, the d’Alembertian
operator is denoted by �2

= ∇
2

− c−2∂/∂t , and c is the wave speed in the medium of wave
propagation. For a BB propagating in a Cartesian coordinate system along the axial z direction,
the generalized mathematical expression for the scalar field of vortex (spiraling) type is given by
Ψi = ΨBB = Ψ0 Jm


kρρ


ei(kz z+mφ−ωt), where Ψ0 is the field amplitude, Jm(·) is the cylindrical

Bessel function of order m, which determines the order (known also as the topological charge) of
the beam. The fundamental solution (m = 0) has a maximum in amplitude (or intensity) at the
center of the beam, whereas the higher-order solutions (|m| ≠ 0) possess a central null [6,7]. The
parameter ρ =


x2 + y2 is the distance to a point in the transverse plane (x, y), the azimuthal

angle is φ = tan−1(y/x), the exponential e−iωt denotes the time-dependence where ω is the angular
frequency, kρ = k sinα0 and kz = k cosα0 are the radial and axial wavenumbers, respectively, k is
the wavenumber, and α0 is the half-cone angle defined with respect to the axis of wave propagation
z, such that α0 = 0 corresponds to plane waves propagating along z.

Note that ΨBB is the result of a superposition of plane waves over a cone with half-angle α0 [4], so
as the resulting interference on the axis of wave propagation z produces an amplitude (or intensity)
maximum for the zeroth-order beam (denoted in the following by J0) resulting from a constructive
interference when the plane waves are all in phase, or a null in axial amplitude (or intensity) for the
higher-order beams (denoted in the following by Jm) resulting from a destructive interference when
the plane waves are phase-shifted with respect to one another, in such a way that the phase shift
around the cone is equal to 2πm.
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