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a b s t r a c t

In this paper, we discuss a general procedure by which nonlin-
ear power spectral densities (PSDs) of the harmonic oscillator can
be calculated in both the quantum and classical regimes. We be-
gin with an introduction of the damped and the undamped classi-
cal harmonic oscillator, followed by an overview of the quantum
mechanical description of this system. A brief review of both the
classical and quantum autocorrelation functions (ACFs) and PSDs
follows. We then introduce a general method by which the kth-
order PSD for the harmonic oscillator can be calculated, where k
is any positive integer. This formulation is verified by first repro-
ducing the known results for the k = 1 case of the linear PSD. It
is then extended to calculate the second-order PSD, useful in the
field of quantum measurement, corresponding to the k = 2 case
of the generalized method. In this process, damping is included
into each of the quantum linear and quadratic PSDs, producing re-
alistic models for the PSDs found in experiment. These quantum
PSDs are shown to obey the correspondence principle by match-
ing with what was calculated for their classical counterparts in the
high temperature, high-Q limit. Finally, we demonstrate that our
results can be reproduced using the fluctuation–dissipation theo-
rem, providing an independent check of our resultant PSDs.
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1. Introduction

The harmonic oscillator, in which a particle is confined to a potential well that varies quadratically
with position, has proven to be a very useful model in a number of classical and quantum systems. In
the classical regime, the harmonic oscillator provides an excellent description of periodic systems such
as a mass on a spring or a pendulum, as well as resonating electronic LC circuits. In the realm of quan-
tum mechanics, an analogous model is successful in predicting the behavior of a number of bosonic
systems, such as photons confined to an optical cavity or phonons in an elastic solid. In fact, the vac-
uum itself is thought to consist of an array of harmonic oscillatorswith a broad range of frequencies [1].

Often, a harmonic oscillator model is applied to a system in isolation, where we generally consider
only linear effects. However, when we begin to consider coupling between harmonic oscillators, or
with other systems altogether, nonlinearities begin to enter the model, leading to new physics. An
example of this sort of interaction arises in cavity optomechanics, in which two harmonic oscillators,
one describing an optical cavity and the other describing a mechanical resonator, are coupled to one
another [2]. In this case, the motion of the mechanical resonator shifts the resonance frequency of
the optical cavity, while the optics provide a radiation pressure force acting back on the mechanics.
For moderate coupling, a simple linear model suffices, such that monitoring the electromagnetic
field provides a readout of the linear motion of the oscillating mechanical device. However, as
the interaction strength between the two systems increases, nonlinear coupling begins to occur,
requiring that higher-order terms be added to the Hamiltonian [3–9]. This provides a method by
which one can obtain direct access to higher-order powers of the mechanical resonator’s motion. For
instance, a number of experiments have demonstrated direct coupling to the square of the oscillator’s
displacement [3,4,9–11]. These types of measurements have generated significant interest, as they
have been proposed as a method to perform quantum nondemolition (QND) measurements [12,13]
of a mesoscopic quantum system [2,3,6,14–17], as well as other exotic two-phonon processes, such
as mechanical cooling/squeezing [5] and optomechanically induced transparency [7,8].

In order to make such measurements effectively, a knowledge of the autocorrelation functions
(ACFs) and power spectral densities (PSDs) corresponding to the nonlinear readout of the oscillator’s
motion is required. Though the first-order PSD is a well-known result [18–23], here we calculate a
general PSD of any order for the quantum and classical harmonic oscillator, with a special focus on
the linear and quadratic cases. The structure of this document is as follows. In Section 2, we provide
a basic overview of the classical and quantum harmonic oscillators in the damped and undamped
situations. Section 3 then provides a description of how to calculate the ACF and PSD of a classical
time-dependent signal. Complementary definitions for a time-dependent quantum operator follow.
Using the results of the previous two sections, Section 4 introduces a general procedure that can be
used to calculate the classical and quantum PSDs of kth-order for the harmonic oscillator. Section 5
reviews the k = 1 case of the first-order PSDof the harmonic oscillator,which is immediately followed
by an extension to the k = 2 case of the quadratic PSD in Section 6. Finally, we conclude the document
by discussing how these PSDs can be used in the context of real experiments.

2. Background

2.1. Classical undamped harmonic oscillator

The model of the classical, undamped harmonic oscillator describes a system whose dynamics are
governed by the following differential equation

ẍ + ω2
0x = 0, (1)

where x(t) is a time-dependent variable that in this case we choose to be the position of the
oscillator and ω0 =

√
k/m is the resonant angular frequency of the system, with k and m being the

oscillator’s spring constant and mass, respectively. The familiar oscillatory solution to this second-
order differential equation is given by

x(t) = x0 cos(ω0t + φ), (2)
where x0 and φ are an arbitrary amplitude and phase of the motion set by the initial conditions.
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