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a b s t r a c t

Entanglement spectrum of finite-size correlated electron systems
are investigated using the Gutzwiller projection technique. The
product of largest eigenvalue and rank of the block reduced density
matrix, which is a measure of distance of the state from the
maximally entangled state of the corresponding rank, is seen to
characterise the insulator to metal crossover in the state. The
fraction of distinct eigenvalues exhibits a ‘chaotic’ behaviour in
the crossover region, and it shows a ‘integrable’ behaviour at
both insulating and metallic ends. The integrated entanglement
spectrum obeys conformal field theory (CFT) prediction at the
metal and insulator ends, but shows a noticeable deviation from
CFT prediction in the crossover regime, thus it can also track a
metal–insulator crossover. A modification of the CFT result for
the entanglement spectrum for finite size is proposed which
holds in the crossover regime also. The adjacent level spacing
distribution of unfolded non-zero eigenvalues for intermediate
values of Gutzwiller projection parameter g is the same as that of
an ensemble of random matrices obtained by replacing each block
of reduced density matrix by a random real symmetric Toeplitz
matrix. It is strongly peaked at zero, with an exponential tail
proportional to e−(n/R)s, where s is the adjacent level spacing, n is
number of distinct eigenvalues and R is the rank of the reduced
density matrix.
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1. Introduction

Quantumentanglement of a systemquantifies the correlations between the parts of the system [1],
which serves as a resource for quantum information processing tasks. The block entanglement, viz.
the entropy of a subsystem, is a widely-used entanglementmeasure, that has been used to investigate
critical behaviour near quantumphase transitions in spin systems [2,3]. But there are notmany studies
of the entanglement in interacting electron systems, which exhibit substantially richer structure
than interacting spin systems as they carry additional charge degrees of freedom. In this article, we
study the strong correlation effect on the entanglement spectrum of the one-dimensional Gutzwiller
state [4,5], as a proto-type strongly-correlated state.
The Gutzwiller state:

Gutzwiller state was initially suggested as a variational ground state for the Hubbard model [4].
In this state, the strong on-site correlation effect of the Hubbard model ground state is mimicked by
applying a projection operator on the non-interactingmetallic state to decrease the double occupancy.
At one end of the control parameter is the metallic state with no projection, viz. a Fermi ground state
constructed from occupying lowest-lying one-electron plane-wave states for both up and down spin
electrons. The metallic state maximises the double occupancy as there is no correlation between the
up and down spin electron. At the other extreme, there is an insulator phase, corresponding to the
fully-projected state with no double occupancy. The Gutzwiller state for a lattice of N sites is given by

|g⟩ =

N
i=1

{1 − (1 − g)n̂i↑n̂i↓}|F⟩, (1)

where |F⟩ =
kF

k=0 ĉ
Ď
k↑ĉ

Ď
k↓|0⟩ is the metallic Fermi state constructed from the vacuum state by using

electron creation operators ĉĎkσ with a momentum k and spin σ , and g is a parameter taking values
from 0 to 1, g = 1 being the non-interacting case, and g = 0 being the limit of infinite interactions.
The filling factor is determined by kF , the Fermi momentum.

While the Gutzwiller state gives good agreement with Hubbard model ground state for three
dimensions, in 1D, it is different from the ground state of the Hubbard model. At half-filling, the
ground state of the Hubbard model in 1D describes a Luttinger liquid, whereas the Gutzwiller state
shows Fermi liquid behaviour [5]. In the thermodynamic limit, for any g ≠ 0, the momentum space
distribution of electrons for the 1D half-filled Gutzwiller state has a discontinuity at the Fermi wave
vector. Therefore, in the thermodynamic limit, the system is metallic for any g ≠ 0. Also, in 1D, the
half-filled Gutzwiller state for g = 0 is the exact ground state of the Haldane–Shastry model [6],
which is a Heisenberg-like model with long range interactions. Hence the Gutzwiller state is, by itself,
an interesting correlated electron state. Here we will be interested in the entanglement spectrum of
the half-filled Gutzwiller state.
Entanglement entropy, fluctuations and metal–insulator crossover:

The block entanglement entropy and bipartite fluctuations of the Gutzwiller state in 1D for half
bipartition has been recently studied as a function of the correlation factor g and the number of sites
N [7]. The block entanglement entropy S for half-bipartition of half-filled Gutzwiller state scales as:

S = ceff (g,N)


1
2

+
1
3
log(N)


(2)

which has the same form as conformal field theory (CFT) result for one dimensional systems except
with an effective central charge ceff (g,N)which is a function of both g andN . At g = 1, ceff = 2 and at
g = 0, ceff = 1which are independent ofN and are the correct results in these two limits fromCFT. The
N dependence occurs for intermediate values of g . The scaling of ceff (g,N) indicates ametal–insulator
crossover. Bipartite fluctuations also show a scaling. The scaling of both bipartite fluctuations and
ceff (g,N) show that for N < 105, the relevant scaling variable is N1/3g and metal–insulator crossover
occurs at N1/3g ≈ 0.24.

The reason behind deviation from the CFT result for intermediate values of g is the existence of a
finite correlation length. As shown in Ref. [7], the correlation length between opposite spins is infinite
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