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a b s t r a c t

We study dynamics of isolated quantum many-body systems
whose Hamiltonian is switched between two different operators
periodically in time. The eigenvalue problem of the associated Flo-
quet operator maps onto an effective hopping problem. Using the
effective model, we establish conditions on the spectral properties
of the two Hamiltonians for the system to localize in energy space.
We find that ergodic systems always delocalize in energy space and
heat up to infinite temperature, for both local and global driving. In
contrast, many-body localized systemswith quenched disorder re-
main localized at finite energy. We support our conclusions by nu-
merical simulations of disordered spin chains. We argue that our
results hold for general driving protocols, and discuss their exper-
imental implications.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Quantum systems coupled to time-varying external fields are ubiquitous in nature. They exhibit
many interesting phenomena including the laser, the maser, electron-spin resonance and nuclear
magnetic resonance (NMR) [1,2]. The experimental developments in ultra-cold atomic or molecular
gases and trapped ions in the last two decades have taken us beyond the few-atom systems into the

∗ Corresponding author at: Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada.
E-mail address: zpapic@perimeterinstitute.ca (Z. Papić).

http://dx.doi.org/10.1016/j.aop.2014.11.008
0003-4916/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.aop.2014.11.008
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2014.11.008&domain=pdf
mailto:zpapic@perimeterinstitute.ca
http://dx.doi.org/10.1016/j.aop.2014.11.008


P. Ponte et al. / Annals of Physics 353 (2015) 196–204 197

a b

Fig. 1. (Color online) (a) A scheme of the general driving protocol. (b) Example of a 1d XXZ spin chain studied numerically
(blue arrows). The Hamiltonian H0 contains nearest-neighbor hopping and interactions, in the presence of random z-field (red
arrows). Driving is performed locally by the local operator V̂ = hszL/2 applied to the middle spin.

regime of isolated interacting systems, whose quantum dynamics reveals novel aspects of thermal-
ization, transport and non-linear response [3,4].

Periodically driven systems can exhibit non-trivial steady states, even in the non-interacting
limit [5–9]. An illustrative system is the kicked quantum rotor, which can dynamically localize in
momentum space [5–8]. Periodic driving can also be used to control the band structure and induce
topological states [10–13].

Here we study periodically driven many-body systems with local interactions. This problem has
recently been addressed by D’Alessio and Polkovnikov [14] who hypothesized that two distinct dy-
namical regimes are possible: the system either (i) keeps absorbing energy, heating up to infinite
temperature (e.g., defined using the time-averaged Hamiltonian) at long times, or (ii) dynamically
localizes at a certain energy, similar to the case of the kicked rotor.

The long-time behavior of a driven system is determined by the properties of the so-called Floquet
Hamiltonian ĤF , defined in terms of the Floquet operator

F̂ = e−iĤF T , (1)

which is the evolution operator over one period,

F̂ = T

 T

0
exp(−iĤ(t)t) dt. (2)

Here Ĥ(t + T ) = Ĥ is the system’s Hamiltonian, and T is time-ordering. The Floquet Hamiltonian,
which determines the time evolution of the system, can be calculated perturbatively in the driving
period T using the Magnus expansion [15]. The convergence of the Magnus expansion implies that
there exists a physical ĤF that is a sum of local terms, such that the driving dynamics is equivalent to
a single quench of the Hamiltonian [14]. In this case, the system retains the memory about ĤF and is
at finite temperature with respect to ĤF after many periods. On the contrary, if the system heats up
to infinite temperature at long times, the Magnus expansion does not converge.

Here we establish the conditions under which the two dynamical regimes are realized in locally
driven many-body systems. We consider a driving protocol illustrated in Fig. 1(a) where the Hamil-
tonian is switched between two operators periodically in time,

Ĥ(t) =


V̂ 0 < t < T1
Ĥ0 T1 < t < T0 + T1

(3)

i.e., Ĥ0(V̂ ) is applied during time T0 (T1), such that the total period T = T0 + T1. We will consider
lattice systems, in which the Hilbert space on every site is finite-dimensional (e.g., an interacting spin
system).

In Section 2 we map the spectral problem for the Floquet operator describing this system onto
an effective hopping problem, and show that the competition between the typical matrix elements
of tan(V̂ T1/2) between the eigenstates of H0 and the typical energy spacings determines whether or
not the system will heat up to infinite temperature at long times. In Section 3 we discuss some of
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